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Introduction
J. B. Conrey, D. W. Farmer, F. Mezzadri and N. C. Snaith

The group of rational points on an elliptic curve is a fascinating number
theoretic object. The description of this group, as enunciated by Birch and
Swinnerton-Dyer in terms of the special value of the associated L-function, or
a derivative of some order, at the center of the critical strip, is surely one of
the most beautiful relationships in all of mathematics; and it’s understanding
also carries a $1 million dollar reward!

Random Matrix Theory (RMT) has recently been revealed to be an excep-
tionally powerful tool for expressing the finer structure of the value-distribution
of L-functions. Initially developed in great detail by physicists interested in the
statistical properties of energy levels of atomic nuclei, RMT has proven to be
capable of describing many complex phenomena, including average behavior
of L-functions.

The purpose of this volume is to expose how RMT can be used to describe
the statistics of some exotic phenomena such as the frequency of rank two
elliptic curves. Many, but not all, of the papers here have origins in a workshop
that took place at the Isaac Newton Institute in February of 2004 entitled
“Clay Mathematics Institute Special week on Ranks of Elliptic Curves and
Random Matrix Theory.” The workshop began with the Spittalsfield day
of expository lectures, highlighted by reminiscences by Bryan Birch and Sir
Peter Swinnerton-Dyer on the development of their conjecture. The week
continued with a somewhat free-form workshop featuring discussion sessions,
groups working on various problems, and spontaneous lectures. The idea for
this volume arose at this workshop. The intention is to gather together a
number of articles to assist someone wishing to begin work in this area.

One of the hightlights of this volume is the collection of beautiful expository
papers and surveys: Kowalski’s introduction to elliptic curves, Silverberg on
ranks of elliptic curves, Ulmer’s discussion of zeta-functions over function fields,
Gamburd’s explanation of symmetric function theory, Rodriguez-Villegas on
the theta series associated with special values, Delaunay on probabilistic group
theory, Farmer on families, and Young on exotic families of elliptic curves.
There are an amazingly rich variety of topics arising from this one focus.

The most important invariant of an elliptic curve is the rank of its (Mordell-
Weil) group of rational points; it is a non-negative integer, believed to be
0 or 1 for almost all elliptic curves. The catalyst for the Newton Institute
workshop was a conjecture (see [CKRS]) about how often the rank is 2 for
the family of quadratic twists of a given elliptic curve. Each elliptic curve
has an L-function associated with it; this is an entire function which satisfies
a functional equation. The Birch and Swinnerton-Dyer conjecture asserts,
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among other things, that the order of vanishing at the central point of the L-
function associated with an elliptic curve is equal to the rank. It is generally
conjectured that almost all elliptic curves have rank zero or one according to
whether the sign of the functional equation of the related L-function is +1 or
—1. Rank two curves should occur with L-functions that have a +1 sign of
their functional equation but vanish nevertheless at the central point. These
are expected to be rare; the question of how rare is the subject here.

If the elliptic curve is given by F : 4> = 23 + Az + B, and if d is a
fundamental discriminant, then the quadratic twist of E by d is the elliptic
curve B, := dy?* = 2% + Az + B. The conjecture, derived from RMT and
number theory, is that Ey will have rank 2 for asymptotically cgaz®*(log x)?=
values of d with |d| < z. Here bg is one of four values described in the article
by Delaunay and Watkins, whereas cg is yet to be determined but depends on
a mix of RMT, number theory, and probabilistic group theory (see the article
of Delaunay on class groups and Tate-Shafarevich groups).

This conjecture, while interesting, is not as compelling as it might be be-
cause of our ignorance of cy. However, an absolutely convincing case for RMT
can be given by considering rank 2 curves as above but divided into arithmetic
progressions of d modulo some prime p.

Using RMT arguments combined with a number theoretic discretization of
the problem, one is led to predict that if a is a quadratic residue mod p and b
is a quadratic non-residue then the ratio of rank 2 twists among d = @ mod p

to d = bmod p is, in the limit,
p+1-—a,
p+1+a,’

where L(s) = 3 ° | a,n~* is the L-function associated with E. Those familiar
with the conjecture of Birch and Swinnerton-Dyer might not be surprised to
see the ratio

ptl—a,

p+1+a,
show up; however, it is the square-root, contributed by RMT, that is the
surprise.

The basic calculation to obtain this result involves a ratio of conjectures

for
> Lg,(1/2)7'%

d=a mod p
d<z

the reason that one takes the -1/2 power here is due to the rightmost pole at
s = —1/2 of the s’th moment of characteristic polynomials of matrices chosen
randomly from SO(2N) with respect to Haar measure. The description of this
calculation and the compelling numerical evidence is in the paper [CKRS].
In this volume, the calculation is taken a step further in the paper of Con-
rey, Rubinstein, and Watkins where lower order terms for the moments are
incorporated and lead to an even more precise evaluation of these ratios.
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The conjectures about quadratic twists can be generalized to cubic twists
in two different ways. One involves the frequency of rank 2 elliptic curves
within the classical family F,, := x® + y> = m. See the interesting paper of
Watkins to understand why it is precisely twice as likely that a number which
is 2 mod 7 is a sum of two rational cubes compared with a number which is 3
mod 7.

The other way to do a cubic twist is to take a fixed elliptic curve F and a
Dirichlet character x of order 3 and consider the twisted L-function, Lg(s, x) =
Y o1 anx(n)n~®. David, Fearnley, and Kisilevsky [DFK] have shown, very
surprisingly, that such twists vanish for about z!/? cubic twists of modulus
< z, and have given precise conjectures, based on RMT, for the asymptotic
frequency of this event. They also consider quintic twists (see their paper
in this volume) and conclude that there are (barely!) infinitely many order
five characters for which the twisted L-function vanishes at the central point.
These predictions are based on calculations with random unitary matrices,
whereas the previously mentioned conjectures arise from considering groups of
orthogonal matrices.

It is interesting to begin with a weight 4 modular newform f, with integer
Fourier coefficients, and similarly ask about vanishing of, say, quadratic twists
of the associated L-function. In this case it is expected that there will be
asymptotically c;z'/4(log 2)® vanishings at the central point of the quadrati-
cally twisted L-functions . The possible values of b; have not been worked out
here; however, if one restricts to prime discriminants, then the power on the
log is expected to be —5/8 in both this case and the case of twists of elliptic
curve L-functions. If one considers weight 6 or higher, it is expected that there
will only be finitely many vanishings of quadratic twists of the associated L-
functions. It is not clear whether one accumulates infinitely many vanishings
if one considers all such weight 6 forms and all of their twists. There is an
arithmetic significance to the vanishings of the twists of the weight 4 modular
forms: it is related to the rank of an associated Chow group, about which we
hope to say more at a later time.

In the twists mentioned in the cases above we only consider the twists for
which there is a plus sign in the functional equation.

The numerical evidence for many of the above conjectures has been accu-
mulated by a combination of people: Tornaria, Rodriguez-Villegas, Rosson,
Mao, and Rubinstein. Much of it is based on an algorithm of Gross for find-
ing the half-integral weight form, as a theta series involving ternary quadratic
forms, whose Fourier coefficients yield the values of the twisted L-series at the
central point. Prior to the February workshop, only a handful of such theta
series were known. During that workshop, the first four people above worked
out the obstacles to further progress and produced literally thousands of ex-
amples for Rubinstein who computed hundreds of millions of values for each;
this provides a nice data bank for testing conjectures.

Matt Young has considered the situation of the “family of all elliptic
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curves.” Basically he parametrizes this family as E4 p : y* = 2° + Az + B and
allows (A, B) to run over a rectangle. He is concerned not only with the dis-
tribution of ranks in this family, but also with statistics such as the ‘one-level
density’ of the zeros. He considers other more exotic families as well, such as
E4 g2 which is forced to have rank at last one. Such families play a role in
Iwaniec’ approach to the Riemann Hypothesis.

All of the above discussion has been focused on rank two. The question of
modelling rank 3 members of a family is much more difficult; in fact it is not
at all satisfactorily addressed. In the case of quadratic twists, to conjecture
the number of rank 2 curves the application of random matrix theory relies on
a discretization arising from the beautiful formula, due in this form to Kohnen

and Zagier:

LEd(l/Z) = KEM

Vid
where cg(|d|) is an integer and kg > 0. In the case of rank 3, we consider
the conjectural formula of Birch and Swinnerton-Dyer for the value of the
derivative of an odd Lg,(s):

i (1/2) = PEREd,

where hg, is the height of a generating point. (Change this to the formula
of Gross-Zagier.) The problem is that we don’t know what kind of discretiza-
tion to give hp. It could conceivably be as small as log|d| but statistically
this does not seem to be the correct model. By the work of Snaith (in this
volume), the right-most pole of the derivative of the sth moment of charac-
teristic polynomials of odd orthogonal matrices occurs at s = —3/2. This
might suggest, if one uses the discretization (log |d|)/+/]d], that there are only
about z'/4 rank 3 curves among the family of twists with conductor smaller
than z. However, Rubin and Silverberg give examples of E which have many
more rank 3 quadratic twists, suggesting that this discretization is not correct.
In examining the limited data we have for rank 3 twists, an interesting phe-
nomenon seems to appear: it looks as though L (1/2) cannot be as small as
(log |d|)/+/]d]. Is it possible that when Sha is small then the height of a gener-
ating point is big and vice-versa? This linkage does not seem unnatural if one
compares for example to the situation of the class number of a real quadratic
field. There one finds that the product of the regulator times the size of the
class group is always about the size of the square root of the discriminant.
However, this analogy may not be correct, since this involves L-functions at
the edge of the critical strip whereas we are discussing values at the center.
The paper of Conrey, Rubinstein, Snaith, and Watkins discusses the so-called
‘Saturday night conjecture’ about the possible sizes of this product. Much
more data is needed to make an informed conclusion.

All of the above and more is contained in this volume. Other directions
yet to be considered are odd weight modular forms, Siegel modular forms, and
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Chow groups and we hope this collection of papers will attract new researchers
to this field and inspire those well acquainted with it to explore further.
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Elliptic curves, rank in families and
random matrices

E. Kowalski

This survey paper contains two parts. The first one is a written version
of a lecture given at the “Random Matrix Theory and L-functions” workshop
organized at the Newton Institute in July 2004. This was meant as a very con-
crete and down to earth introduction to elliptic curves with some description
of how random matrices become a tool for the (conjectural) understanding of
the rank of Mordell-Weil groups by means of the Birch and Swinnerton-Dyer
Conjecture; the reader already acquainted with the basics of the theory of el-
liptic curves can certainly skip it. The second part was originally the write-up
of a lecture given for a workshop on the Birch and Swinnerton-Dyer Conjecture
itself, in November 2003 at Princeton University, dealing with what is known
and expected about the variation of the rank in families of elliptic curves. Thus
it is also a natural continuation of the first part. In comparison with the orig-
inal text and in accordance with the focus of the first part, more details about
the input and confirmations of Random Matrix Theory have been added.

Acknowledgments. I would like to thank the organizers of both work-
shops for inviting me to gives these lectures, and H. Helfgott, C. Hall, C.
Delaunay, S. Miller, M. Young and M. Rubinstein for helpful remarks, in par-
ticular for informing me of work in process of publication or in progress that
I was unaware at the time of the talks. In fact, since this paper was written,
a number of other relevant preprints have appeared; among these we men-
tion [Sn], [Mil2], with no claim to exhaustivity!

Notation. We use synonymously the two notations f(z) = O(g(x)) and
f(z) < g(z) for x € X, where X is some set on which both f and g > 0 are
defined; it means that for some “implied” constant C' > 0 (which may depend
on further parameters), we have |f(z)| < Cg(x) for all z € X. On the other
hand, we use f = o(g) as x — =g, for some limit point zy, to mean that the
limit of f/g exists and is 0 as  — x¢, and similarly f ~ g for z — z¢ means
f/lg— 1lasz — xo.

1 A concrete introduction to elliptic curves
Before embarking on our journey, we refer in general to Silverman’s book [AEC]

for a very good and readable discussion of the topics covered here, with com-
plete proofs for all but the most advanced. Each subsection will include ref-
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erences to the parts of this book that corresponds, and other references if
necessary.

1.1 Elliptic curves as algebraic curves, complex tori and
the link between the two

Elliptic curves can be seen in a number of different ways. We will present
the two most geometric. First, an affine plane cubic curve over the field C of
complex numbers is simply the set of complex solutions (z,7) € C x C of an
equation

y2+a1xy+a3y:z3+a2x2+a4x+a6 (1.1)

(called a general Weierstrass equation), where ay, ay, as, as and ag are arbi-
trary complex numbers. If all the a; are rational numbers, the curve is said
to be defined over Q. It is those curves which are most relevant for number
theory, and especially one is concerned with the basic diophantine question
which is to find all rational solutions (z,y) € Q x Q to the equation (1.1).

For many reasons, it is usually more convenient to present the equation (1.1)
in homogeneous form

Y?Z+arXYZ +a3YZ? = X? + 0, X227 + a4 X 2% + ag2° (1.2)

(which defines a projective cubic curve) and look for triplets of solutions
(X,Y, Z) in the projective plane P,(C) instead of the place C2, which means
looking for non-zero solutions (X, Y, Z) # (0,0,0) and identifying two solutions
(X,Y,Z) and (aX,aY,aZ) for any non-zero o € CX.

If in a triplet (X,Y, Z) satisfying (1.2) we have Z # 0, then we can replace
(X, Y, Z) by the equivalent solution (X/Z,Y/Z,1) and this satisfies (1.2) if and
only if the pair (z,y) = (X/Z,Y/Z) satisfies the original equation (1.1). So
the homogeneous solutions with Z # 0 are in one-to-one correspondence with
the points on the affine cubic curve. However, if Z = 0, the equation (1.2)
gives X = 0, so the solutions are (0,Y,0) with Y # 0 arbitrary. All those
are in fact equivalent to a single solution (0, 1,0), which is called the point at
infinity, often denote co. Note in particular that this point always has rational
coordinates.

Plane cubic curves provide the first “picture” of elliptic curves, that as
algebraic curves. However, there is a necessary condition imposed on an equa-
tion (1.1) before it is said to be the equation of an elliptic curve, namely it
must define a smooth curve in C x C. This means that the partial derivatives

2y+ax+a3 and ayy — 32° — 2a97 — ay

must not have a common zero (z,y) which is also a point on the cubic curve.
There is an explicit “numeric” criterion for this to hold (see [AEC, p. 46]); in
the slightly simpler case where a; = a3 = 0 (we will see that one can reduce to
this case in most situations), the smoothness expresses simply that the cubic
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polynomial ® 4 aox® + asx + ag has three distinct roots in C, equivalently that
the discriminant A = —16(4a3 + 27a?) is non-zero. Thus, this will be true for
a “random” equation (1.1).

To summarize this definition: an elliptic curve, as an algebraic curve, is
the set of projective solutions (X,Y, Z) to an equation (1.2) which defines a
smooth curve.

Example 1.1. e The plane cubic curve with equation
y =z

is not an elliptic curve: the point (0,0) is a singular point (the curve looks like
a “cusp” in the neighborhood of (0,0)).
e Similarly, the curve with equation

y2=$3+fl)2

is not an elliptic curve; again (0, 0) is singular, and the curve looks like a node
in the neighborhood of (0, 0).
e The curve with equation

v¥=2—z=z(z-1)(z+1)

is an elliptic curve, since the right-hand side has three distinct roots in C.
This curve is defined over Q. It is often called the congruent number curve,
for reasons we will explain below; it is also a so-called CM curve, and this
terminology will also be explained.

e Let £ > 2 be a prime number. If (a,b,c) were non-zero rationals such
that a’ + b’ = ¢, then the cubic curve

v’ =z(xz —a)(z+ b9

would be a very remarkable elliptic curve (defined over Q), in fact so remark-
able that it cannot possibly exist: this is the “highest level” summary of how
Wiles proved Fermat’s Great Theorem.

The other view of elliptic curves is more analytic in flavor, and identifies
them with complez tori. Namely, let w;, wy be non-zero complex numbers,
with wy/we ¢ R. Let A = w1Z @ wyZ; this is an abelian subgroup of C, and
it generates C as an R-vector space. Those two properties characterize the
lattices in C, and all of them are given as described.

Now consider the quotient group X = C/A which one views as a compact
Riemann surface (it is compact because, for instance the compact set {aw; +
bwy | (a,b) € [0,1] x [0,1]} projects surjectively to X ). Topologically, this is a
torus, and as a group, this is (R/Z)2. Now the analytic definition of an elliptic
curve is simply that it is one such quotient C/A for some lattice A C C. We
will now discuss how this definition and that as smooth plane cubic curve are
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compatible. A small warning: although it is tempting to think so at first,
taking w; with rational coordinates does not give the analogue of cubic curves
defined over Q! In fact, for a curve defined over Q, the ratio wy/w; is almost
always transcendental, see e.g. [Ba, Ch. 6].

It is always natural to look for meromorphic functions defined on a Riemann
surface (for instance, think that on a cubic curve we have two natural rational
functions, (z,y) — z and (z,y) — y which are used to give the equation of the
curve). Very concretely, this means we wish to consider meromorphic functions

f:C—-C
which are w; and wy-periodic:
f(z+w1) = f(2) and flz+ws) = f(2).

Those f are called elliptic functions; this is where the history began in fact,
since it was found, over a long period, that the arc-length on an ellipse can
be expressed in terms of (inverses of) such functions (see [AEC, 168-170] for
a sequence of exercises explaining this).

Now for a given A, one can construct an elliptic function p which has a pole
of order 2 at points of A and no other singularities, and satisfies the algebraic
differential equation

0 =49 — gop — g5

for some g,, g3 € C. In fact, this is the Weierstrass go-function of A which is
given explicitly by the series

o) =5+ (G~ )

wEA
w#0

and g, and g3 are the absolutely convergent series

92 :602% g3 = 1402%.

wEA weA
w#0 w#0

Sending z — (2p(z), v2¢'(z)) gives points on the plane cubic
v =12%— gor — 293 (1.3)

with 0 — oo since p has a pole at z = 0. One shows that this map is bijective,
and that this cubic curve is smooth, hence is an elliptic curve “as plane curve”.
Moreover, one shows that all elliptic curves with a; = a3 = ay = 0 arise in this
manner, and also that simple changes of variables can bring any Weierstrass
equation (1.2) to the form (1.3).

References: [AEC, I11.1,VI]



