BIOTECHNOLOGY

JOHN BU'LOCK BJORN KRISTIANSEN

·BASIC· BIOTECHNOLOGY

Edited by

JOHN BU'LOCK

Weizmann Microbial Laboratory Department of Chemistry University of Manchester Manchester M13 9PL England

BJORN KRISTIANSEN

Department of Bioscience and Biotechnology Applied Microbiology Division University of Strathclyde Glasgow G1 1XW Scotland

1987

ACADEMIC PRESS Harcourt Brace Jovanovich, Publishers London Orlando San Diego New York Austin Boston Sydney Tokyo Toronto

ACADEMIC PRESS INC. (LONDON) LTD. 24/28 Oval Road, London NW1

United States Edition published by ACADEMIC PRESS INC. Orlando, Florida 32887

Copyright © 1987 by ACADEMIC PRESS INC. (LONDON) LTD.

All Rights Reserved No part of this book may be reproduced in any form by photostat, microfilm, or any other means without written permission from the publishers

> British Library Cataloguing in Publication Data Basic Biotechnology.
> 1. Biotechnology
> I. Bu'Lock, J.D. II. Kristiansen, Bjorn 660'.6 TP248.2

ISBN 0-12-140752-7 ISBN 0-12-140753-5 Pbk

Printed in Great Britain by Galliard (Printers) Ltd, Great Yarmouth

Contributors

K. Allermann Institute of Plant Physiology, University of Copenhagen, Ø Farimagsgade 2A, DK-1353 Copenhagen K, Denmark

H. W. Blanch Department of Chemical Engineering, University of California, Berkeley, CA 94720, USA

J. W. Brewer Biotechnology Division, Miles Laboratories Inc, Elkhart, IN 46515, USA

J. D. Bu'Lock Microbial Chemistry Laboratory, University of Manchester, Manchester M13 9PL, UK

K. Corbett Beecham Pharmaceuticals, UK Division, Worthing, West Sussex, BN14 8QH, UK

R. P. Elander Industrial Division, Bristol-Meyers Co, PO Box 4755, Syracuse, NY 13201-4755, USA

M. W. Fowler Wolfson Institute of Biotechnology, Sheffield University, Sheffield S10 2 TN, UK

W. E. Goldstein Research and Development Group, Miles Laboratories Inc, Elkhart, IN 46515, USA

C. F. Gölker Bayer AG, Verfahrensentwicklung Biochemie, Friedrich-Ebert-Strasse 217-333, D-5600 Wuppertal 1, West Germany

D. L. Hawkes Department of Mechanical and Production Engineering, The Polytechnic of Wales, Pontypridd CF37 1DL, UK

F. R. Hawkes Department of Science, The Polytechnic of Wales, Pontypridd CF37 1DL, UK

E. A. Jackman Jackman's Economic and Technical Services Ltd, 244 Highlands Blvd, Leigh-on-Sea S59 3QZ, UK

B. Kristiansen Department of Bioscience & Biotechnology, Applied Microbiology Division, University of Strathclyde, Royal College Building, 204 George Street, Glasgow G1 1XW, UK

J. L. Meers Sturge Biochemicals Ltd, Denison Road, Selby SO8 8EF, UK

P. E. Milsom Sturge Biochemicals Ltd, Denison Road, Selby YO8 8EH, UK

M. Moo-Young Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

iv Contributors

K. Murray Department of Molecular Biology, University of Edinburgh, King's Building, Mayfield Road, Edinburgh EH9 3JR, UK

J. Olsen Department of General Microbiology, University of Copenhagen, Solvgarde 83 H, DK-1307 Copenhagen K, Denmark

G. W. Pace Intra-Optics Laboratories Pty Ltd, PO Box 37, St Ives, NSW 2075, Australia

L. B. Quesnel Department of Bacteriology and Virology, University of Manchester, Manchester M13 9PT, UK

C. Ratledge Department of Biochemistry, University of Hull, Hull HU6 7RX, UK

J. A. Roels Gist Brocades, Research and Development, Wateringseweg 1, PO Box 1, 2600 MA Delft, The Netherlands

G. Schmidt-Kastner Bayer AG, Verfahrensentwicklung Biochemie, Friedrich-Ebert-Strasse 217-333, D-5600 Wuppertal 1, West Germany

C. G. Sinclair Department of Chemical Engineering, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK

R. E. Spier Department of Microbiology, University of Surrey, Stag Hill, Guildford GU2 5XH, UK

C. Vezina Institut Armand-Frappier, University of Quebec, 531 boulevarde des Prairies, Ville de Laval, Quebec H7N 4Z3, Canada

Preface

Jourdain: Par ma foi! il y a plus de quarante ans que je dis de la prose que j'en suisse rien, et je vois suis le plus obligé du monde de m'avoir appris çela.

Molière, Le Bourgeois Gentilhomme II.iv

And many a lakke-of-Dover hastow sold That hath been twyes hoot and twyes cold

Chaucer, The Cook's Tale—Prologue

Why, when there seems to be such a lot of it about, do we need yet another book about biotechnology—and in particular one that claims to deal with *basic* biotechnology? There are real biotechnologists around, who were already doing the same sort of thing they are doing today well before the term became so fashionable; equally there are people who have elected to call what they are doing by this trendy new term because it sells well. So we have headed this preface with quotations that seem to define those two categories; more tediously, we shall follow the worthy but dull definition promulgated by the European Federation of Biotechnology and define our subject as the practical application of biological organisms, or their subcellular components, to manufacturing and service industries and to environmental management.

Above all, through our contributing authors and as editors, we have tried to present biotechnology as something which is already going on. Whereas for some enthusiasts biotechnology has mainly been a matter of promise—and promises—we have tried to introduce it as a productive technology which has real significance now, and even in the not-so-recent past, as well as potentiality for the future, and which can therefore be introduced to students and new researchers in a 'hard-core' way which is not at all superficial. Perhaps for each new generation of entrants into biotechnology it is the future potentialities that provide the motivation, but it must be the past and present realities that provide the machinery through which that drive will work.

vi Preface

In one sense at least, the beginnings of modern biotechnology are exemplified by Weizmann's development of a practical acetone-butanol fermentation in 1913-15; prior to this, various 'natural' microbial and enzymic processes had been first used, then interpreted, and-increasingly after Pasteur-controlled and even manipulated, but Weizmann's process was the first new productive application of biocatalysis on an industrial scale. Contemporarily, on the other side of the globe and slower to reach industrial significance, the Japanese had been developing both the applications and the production of enzymes. Also contemporary, and by coincidence coming from the same laboratory as Weizmann in Manchester, were the first conscious applications of some (quite crude) microbiology to the large-scale process of sewage treatment, hitherto simply a matter of rather simplistic civil engineering; it is a matter for real regret that some of the aspects of biotechnology arising from this last approach have had to be omitted here because of our over-riding need to present a thorough and self-contained account in quite a small compass.

We have divided our book into two major sections, the first dealing with basic principles and the second with a range of illustrative examples of practical biotechnology and some of its problems. We think that this is the order in which the book itself should be used, but its contents were actually determined by working in reverse order; we started from a range of actual examples of productive biotechnology, by no means exhaustive but hopefully representative, to be dealt with by experts of different kinds, each approaching their own topic in their own way. From these we worked back to define the kinds of basic understanding that would be needed, either to comprehend or to further advance those real processes. As a result our selection of 'basic principles' covers a wide range. However, we believe that no more than a superficial account of biotechnology can be given without taking account of the essential interdisciplinarity of the subject.

It follows that the typical scientist or engineer, and in particular the newly graduated scientist or engineer for whom this book is primarily intended, will find some of the basic principles quite familiar, while others fall quite outside his or her past experience. No matter: even among what is familiar, it will be useful to emphasize what aspects of the known discipline are the most relevant.

The best alternative to superficiality is therefore to try to cope comprehensively with all the relevant (and even partly-relevant) disciplines, and then to append comprehensive 'state-of-the-art' accounts of the equally diverse actual and potential applications. Unfortunately this leads to the assembling of multi-volume compendia, written by experts but edited by committees, meritorious but massive works to be found only in correspondingly well-endowed libraries. Knowing from experience that the task of editing such miscellanies into a coherent account would be beyond our capabilities, we have tried to do something more modest, which we hope will be of real use for a rather larger number of readers.

Sometimes we have been quite ruthless with our authors, despite their individual distinction, and so for the final results of our temerity we must pay by accepting full responsibility for all the errors, inconsistencies, omissions, misplaced emphasis, and plain wrongheadedness that the careful reader will undoubtedly find; *miserere nos*.

For some of the omissions we can make pleas in mitigation. For example, though much of our emphasis is on biotechnology's uses of microorganisms, we have excluded any descriptive microbiology as such, just as we have excluded hydrodynamics, differential calculus, protein chemistry and patent law though all these have their uses and their relevance for biotechnology. It would be possible (and indeed interesting) to compile an account of 'The Organisms of Biotechnology', but the result would probably be neither good biotechnology nor good microbiology. The biotechnologist will need the skills of a microbiologist (or a mathematician or a patent attorney), either personally or as part of the team, for example to understand the requirements of the organism actually being used or to consider what others might fit the application as well or better. Screening, selection, and strain improvement will be the major 'interface' for this, and so we have specifically covered these aspects; perhaps unfortunately, we have not been able to deal with the other interface which is the microbiologists' understanding of the morphology, habit and general life-style of organisms. This is only partly for reasons of space; our present understanding and exploitation of this aspect of biotechnology is actually rather limited. Maybe our omission will stimulate more work in this, as in other under-represented aspects. Thus for microbiology, as for biochemistry and indeed for physics and engineering principles, we have tried simply to indicate what the biotechnologist needs to know in order to ask the microbiologist, or the biochemist or engineer, the right questions-and perhaps to help the microbiologist, biochemist or engineer to understand what they are being asked, and why it matters!

Indeed, if our compilation helps to draw attention to the areas of basic science and engineering in the contributory disciplines that are most relevant to biotechnology, and to promote more research (and more support) for those areas, it will be serving a valuable purpose. In keeping with a narrowly utilitarian age, the fashion for ruthlessly target-oriented research is rapidly leading to a situation in which empirical applications, based on superficial extensions of old understanding, have outstripped the basic knowledge that is needed. Today's shiny edifice of biotechnology is in

viii Preface

serious danger of collapsing into inadequate foundations, and the numerous national and international commissions and committees that exist to 'promote' biotechnology need to have this brought rather urgently to their attention.

This, then, is our plea in mitigation to those who will use our book to make their entry into biotechnology. The enthusiasts who are already there will have different objections; there is little here for flavour-of-themonth fans. By describing a broad selection of process biotechnology as it is, rather than speculating about what it might become, we hope our readers will emerge better-equipped to understand not only what they are doing today, but what they might do tomorrow.

Biotechnology is—or it can be—clean technology, green technology, and human-scale technology. It lends itself more readily to improving the human condition than to terminating it. It will become our major technology if mankind has any future, and today we are only seeing its very beginnings. But even in today's world it can also make good brass-nosed economics—if that is all you care about.

> John D. Bu'Lock Pune, India; November 1986

Contents

Contributors	iii
Preface	v

PART I: Fundamentals and Principles

1	Intro	duction to Basic Biotechnology	
	J. D. 1	BU'LOCK	3
	1.1	What is biotechnology?	3
		Biotechnology operations	4
	1.3	What cells can do	7

2 Biochemistry of Growth and Metabolism

C. RA	TLEDGE	11
2.1	Introduction	11
2.2	Catabolism and energy	12
2.3	Catabolic pathways	14
2.4	Gluconeogenesis	28
2.5	Energy metabolism in aerobic organisms	29
	Energy production in anaerobic organisms	32
2.7	Anaerobic metabolism	34
	Biosynthesis and growth	39

3 Thermodynamics of Growth

J. A.	ROELS	57
3.1	Introduction	58
3.2	The methodology of thermodynamics	59
3.3	The efficiency of microbial growth	67
3.4	Biochemical approaches towards the energetics of growth	73

x Contents

4	Micro	obial Process Kinetics	
	C. G.	SINCLAIR	75
	4.1	Introduction	75
	4.2	Formulating mathematical models	77
	4.3	Basic kinetic mechanisms	84
	4.4	Kinetic rate equations	87
	4.5	Fermentation process models	103
	4.6	Measuring and quantifying kinetic parameters	127
-	-		
		sport Phenomena and Bioreactor Design	
	M. MO	DO-YOUNG AND H W BLANCH	133

	of reend find in Derneth	133
5.1	Introduction	135
5.2	Physical pathways in bioreactors	138
5.3	Interparticle transfer rates; correlations for $k_{\rm L}$	143
5.4	Intraparticle bioreaction rates	151
5.5	Physical properties of bioreactor media	153
5.6	Bioreactor performance	158
5.7	Power requirements	165
5.8	Scale-up	168

6 Downstream Processing in Biotechnology

	0	
G. SCI	HMIDT-KASTNER AND C. F. GÖLKER	173
6.1	Introduction	173
6.2	Separation of particles	174
6.3	Distintegration of cells	179
	Extraction methods	
	Concentration methods	
	Purification and resolution of mixtures	
6.7	Drying	193

7	Steril	ization and Sterility	
	L. B.	QUESNEL	197
	7.1	Introduction	197
		Resistance to sterilization	197
		Mechanisms of killing	198
	7.4	Measurement of killing	199
	7.5	Determination of sterilization conditions	203
		Practical methods	207
		Evaluation of sterilization efficiency	213

Micro	bial Screening, Selection and Strain Improvement	
R. P. I	ELANDER	217
8.1	Introduction	217
8.2	Sources of industrially important microorganisms	218
8.3	Microbial screening	221
8.4	Strain improvement	231
	R. P. 1 8.1 8.2 8.3	 Microbial Screening, Selection and Strain Improvement R. P. ELANDER 8.1 Introduction 8.2 Sources of industrially important microorganisms 8.3 Microbial screening 8.4 Strain improvement

9 Instrumentation

B. KRISTIANSEN		
9.1	Introduction	253
9.2	Terminology	254
9.3	Process control	255
9.4	Air flow monitoring	257
9.5	Measurements of power input	259
9.6	Temperature measurements	259
9.7	Rheological measurements	261
9.8	Foam control	264
9.9	pH probes	265
9.10	Redox probes	266
9.11	Dissolved oxygen probes	266
9.12	Enzyme probes	270
9.13	Gas analysis	274
9.14	Determination of cell concentration	279

PART II: Practical Applications

10 Micro	bial Biomass as a Protein Source	
J. OLS	EN AND K. ALLERMANN	285
10.1	Introduction	285
10.2	The SCP process	287
10.3	Selection of microorganisms	289
10.4	Substrates and processes	292
10.5	SCP production in the Soviet Union	304
10.6	Nutrition and safety evaluation	305
10.7	Economics and future prospects	306

xii Contents

11 Indus	strial Alcohol	
E. A. J	ACKMAN	309
11.1	Introduction	309
11.2	Fermentation feedstocks	310
11.3	Specific substrates	312
11.4	Fermentation	319
11.5	Distillation methods	330
11.6	Effluent processing	333

337

337

337

341

345

348

350

354

Anaerobic Digestion 12 F. R. HAWKES AND D. L. HAWKES 12.1 Introduction Biochemistry and microbiology of anaerobic digestion ... 12.2 12.3 Types of digester Types of waste for digestion 12.4 Digester operation..... 12.5 12.6 Energy from digesters..... 12.7 Economics

13	Organi	c Acids and Amino Acids	
J.	L. ME	ERS AND P. E. MILSOM	359
	13.1	Introduction	359
	13.2	Citric acid	360
	13.3	Gluconic acid	363
	13.4	Itaconic acid	366
	13.5	2-Ketogluconic acid	367
	13.6	Erythorbic acid	368
	13.7	Tartaric acid	369
	13.8	Lactic acid	371
	13.9	Acetic acid and other volatile fatty acids obtained by	
		anaerobic fermentation	372
	13.10	L-Glutamic acid	374
	13.11	L-Lysine	377
	13.12	L-Aspartic acid	380
	13.13	L-Tryptophan	381
	13.14	D-Arylglycines	382

14 Enzy	mes as Bulk Products
W. E.	GOLDSTEIN
14.1	Introduction
14.2	Organism sources and strain development
14.3	Fermentation
14.4	Processing and purification
14.5	Examples: enzyme production
14.6	Examples: enzyme applications
14.7	Trends and perspectives
1 1.7	Trends and perspectives
15 The	Production and Purification of Fine Enzymes
J. W.]	BREWER
15.1	Introduction
15.2	Fermentation sources for enzymes
15.3	
15.4	Preliminary purification (preparation for column chro-
	matography)
15.5	Chromatographic and other methods used in final purifi-
1010	cation
15.6	Preparation of enzymes for long-term storage
15.0	
15.8	Enzyme manufacturing credentials
15.0	
10.7	Conditions for simpping enzymes that
16 Proc	luction of Antibiotics
K. CO	RBETT
16.1	Introduction
16.2	Inoculum preparation
16.3	Design of the fermentation plant
16.4	Production media
16.5	Seed stage
16.6	6
16.7	1 0
16.8	
17 Mici	robial Gums
G. W.	PACE
17.1	Introduction
17.2	
17.3	
17.4	

18 Bioti	ansformation	
C. VEZ	ZINA	463
18.1	Introduction	463
18.2	The world of biotransformations	464
18.3	Biotransformation of D-sorbitol to L-sorbose	466
18.4	Microbial transformation of steroids and sterols	468
18.5	Technology of biotransformation	476
18.6	Microbial models of mammalian metabolism	479
18.7	Conclusion	481
19 Gene	tic Engineering and its Applications	
K. MU	RRAY	483
19.1	Introduction	483
19.2	Molecular cloning	489

19.3	Some examples of applications	498
	Conclusion	

20 Proce	esses and Products Dependent on Cultured Animal Cells	
R. E. S	PIER	509
20.1	Historical	509
20.2	Types of products which can be obtained from cultured	
	animal cells	510
20.3	Overview of methodology for product generation	511
20.4	Monolayer cell growth systems	514
	Downstream processing	522
	Genetically engineered animal cells and bacteria	523

21 Prod	ucts from Plant Cells	
M. W.	FOWLER	525
21.1	Introduction	525
21.2	Nature of cell cultures	530
21.3	Mass cell growth and production systems	536
21.4	Products from cell cultures	540
21.5	Conclusion	544

Index	5
-------	---

Part I Fundamentals and Principles

4

此为试读,需要完整PDF请访问: www.ertongbook.com