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ABSTRACT

Stochastic linearization is perhaps the most frequently used analytical method for
analyzing the response of many nonlinear systems, as it provides reasonable estimates of
the mean square response. However, the method is not, in general, well suited for
estimating the power spectra of stationary responses of randomly excited nonlinear
systems. In addition, for a Gaussian excitation, the linearized solution leads to a
Gaussian probability distribution, whereas the true response is non-Gaussian. In this
study, a higher order method termed equivalent stochastic "quadratization" is proposed to
circumvent these shortcomings. The nonlinearity is replaced by a polynomial expansion
up to a quadratic order. In this manner the Volterra series method can be used to
approximate the response of the resulting nonlinear system. The system excitation is
assumed to be Gaussian. However, the response is described by a non-Gaussian
probability distribution. The method is developed for analyzing the stationary response
of single and multi-degree-of-freedom systems; pertinent instructional examples are
included. Further, a useful practical application of the proposed method is pursued for
analyzing the stochastic response of compliant offshore platforms due to nonlinear drag
forces. These are structures used to exploit oil resources in great water depths. The
compliant nature of these platforms introduces nonlinear behavior which can not be
neglected as in conventional offshore platforms. The method is applied for analyzing a
specific three-degree-of-freedom model of a Tension Leg Platform (TLP) subject to wave
and current forces. In addition to nonlinear drag forces, nonlinear potential forces
significantly affect the TLP response. These forces are derived in the form of second
order Volterra series. A stochastic response analysis of the TLP system due to combined
nonlinear drag and nonlinear potential forces is performed to evaluate the relative
significance of these forces.

The analytical results produced by the equivalent quadratization method for the
instructional and practical problems considered, are found in good agreement with
pertinent numerical data generated by Monte Carlo studies.

Clearly, the concept of quadratic, or even higher power, polynomial approximation
of arbitrary nonlinearities and subsequent application of the Volterra series expansion for
determining the random response of the derived equivalent nonlinear system, appears to
be quite promising and meritorious. However, it is noted that the present study is strictly
preliminary in nature, and reporting its findings in the present format conforms with the
objective of the Lecture Notes in Engineering Series. Additional research is required to
address versatility, reliability, and efficiency issues.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

As offshore oil production moves into deeper water, compliant structural systems
are becoming increasingly important. Examples of this type of structure are tension leg
platforms (TLP's), guyed tower platforms, compliant tower platforms, and floating
production systems. The common feature of these systems, which distinguishes them
from conventional jacket platforms, is that dynamic amplification is minimized by
designing the surge and sway natural frequencies to be lower than the predominant
frequencies of the wave spectrum. Conventional jacket platforms, on the other hand, are
designed to have high stiffness so that the natural frequencies are higher than the wave
frequencies. At deeper water depths, however, it becomes uneconomical to build a
platform with high enough stiffness. Thus, the switch is made to the other side of the
wave spectrum. The low natural frequency of a compliant platform is achieved by
designing systems which inherently have low stiffness. Consequently, the maximum
horizontal excursions of these systems can be quite large.

The low natural frequency characteristic of compliant systems creates new analytical
challenges for engineers. This is because geometric stiffness and hydrodynamic force
nonlinearities can cause significant resonance responses in the surge and sway modes, even
though the natural frequencies of these modes are outside the wave spectrum frequencies.
High frequency resonance responses in other modes, such as the pitch mode of a TLP, are
also possible.

One source of nonlinearity is the hydrodynamic drag force, which is due to flow
separation around a submerged member. This force is frequently modeled mathematically
by empirical equations such as the nonlinear Morison equation. For performing stochastic
analyses, linearization methods such as described by Malhotra and Penzien(1970) are often
utilized. However, responses at frequencies outside the wave spectrum frequencies are not
predicted by linearization. Therefore, some response statistics may be significantly
unconservative. In this study, a higher order method termed equivalent stochastic
"quadratization" is proposed to circumvent this shortcoming of the equivalent stochastic

linearization method.
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Another source of nonlinearity is in the wave induced potential forces. These
forces result from potential pressure gradients due to waves. Most compliant platform
analyses in the literature model these forces by numerical methods such as finite element
methods or sink-source methods, or by analytical methods based on slender member
theory. The numerical methods are good for modeling systems with complex geometrics,
but are computationally expensive and more suitable for final design analyses. The interest
of this study focuses on analytical methods since they are efficient and provide more insight
into the fundamental behavior of compliant systems, although some accuracy may be
sacrificed. Methods based on slender member theory, however, are inadequate because
they do not consider wave scattering effects. For vertical cylinders, analytical methods that
include wave scattering effects have been published in the literature, but have only been
applied to compliant platform analyses in a limited manner. In this study, a more complete

accounting of the potential forces is made.

1.2 Aim of Study

The purpose of this study is twofold. First, it is to verify the usefulness of the
equivalent stochastic quadratization method as a tool for obtaining the response statistics of’
a compliant offshore system subject to nonlinear drag forces. A TLP system is used to
develop and exemplify the proposed method. The verification procedure is presented in a
systematic manner. The method is first developed as a general tool for analyzing nonlinear
single-degree-of-freedom(sdof) systems subject to simple force excitations. The
applicability of the method is then extended to general nonlinear multi-degree-of-
freedom(mdof) systems, before finally applying it to a TLP system with three degrees of
freedom. The second aim of the study is to analyze the response of the TLP system to
combined nonlinear drag and nonlinear potential forces to evaluate the relative significance
of these forces. Some of the more recent methods for modeling nonlinear potential wave
forces are derived in a form which is more suitable for stochastic analyses of compliant
systems. The estimation of the nonlinear low frequency surge response of a TLP system is
of particular interest to this study. The nonlinear high frequency pitch response and its
effect on axial tendon tensions is also to be investigated. In addition, the non-gaussian
nature of the responses is considered to be an integral part of the analysis. This author is
aware of no other analytical study which is more comprehensive in its modeling of the

nonlinear wave forces and consequent responses of a TLP.
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The remainder of this chapter is a discussion of modeling TLP systems and the
environmental loads which act on a TLP's structural members. This is followed by a
literature review of TLP response studies. The section on environmental loads is a
somewhat involved review of hydrodynamic wave force theories since the response
analyses of TLP's can not be understood without consideration of the hydrodynamic

forces. The last section of this chapter gives a general scope of this study.

1.3 TLP Model

A TLP has a floating hull which is tied in place by tensioned vertical tendons. The
typical TLP hull shape consists of four cylindrical column members arranged in a
rectangular grid and connected at the base by cylindrical pontoon members. A diagram of
the idealized TLP that is used in this study is shown in Figure 1.1.

The stochastic response of the hull due to wave and current induced forces is the
primary interest of this study. Jefferys and Patel(1981) have shown that the inertia and
wave forces acting on the tendons have a negligible effect on the motion of the hull.
Therefore, the tendons are treated as massless springs which in conjunction with the hull
buoyancy provide the restoring forces on the hull. The geometric nonlinearities inherent in
the restoring forces are neglected since they are less important than the wave force
nonlinearities. This is common assumption used in the literature.

Typically, the hull is considered to be a rigid body with six degrees of freedom.
However, in the presence of a unidirectional flow field, which is parallel to the surge axis
of the TLP, the hull responds in only three degrees of freedom. That is, surge or
horizontal translation, heave or vertical translation, and pitch or rotation. This simple flow
condition can be used to highlight the salient features of TLP responses. Therefore, it is
used in the present analysis for simplicity and clarity of the results. It is noted that the pitch
and heave motion directly influence the force in the tendons, while the surge motion has
only an indirect influence through coupling with the pitch motion. The surge motion is
most important in the analysis and design of the riser system and foundation, which are not
modeled in the present study.

The surge natural period of typical TLP's is on the order of 70 to 120 seconds. The
pitch and heave natural periods are much less and are in the range of 2 to 4 seconds. These
periods are away from the dominant wave periods which are 4 to 6 seconds in normal sea

states and 12 to 20 seconds in severe sea states. It is noted that the surge and pitch degrees
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of freedom are coupled through the added mass matrix and the hydrostatic stiffness matrix.
The natural frequencies, however, are not very different than if the off diagonal terms in the
mass and stiffness matrices are neglected. This indicates that the coupling is small. The
heave degree of freedom is not coupled with the other degrees of freedom.

It is assumed that the total fluid force acting on the TLP hull can be obtained by
summing the fluid forces acting on individual hull members as though other members are
not present. In actuality, the presence of nearby members alters the flow field and, hence,
the force acting on a member. If the members are spaced on the order of five diameters
away from each other, however, the effect is small. This is a reasonable assumption for
most TLP hulls.

1.4 Environmental Loads

The environmental loads acting on a TLP are due to waves, current, and wind.
Only the response due to waves and current is considered in this study. Despite
considering the TLP system to be linear, the response is still nonlinear because the wave
and current induced forces are nonlinear. The linearity of the force depends on its relation
to the wave elevation from linear wave theory. A linear force is linearly related to the wave
elevation, a quadratic force is quadratically related to the wave elevation, and so on. In
offshore systems, it is convenient to express the force and the resulting response as a
Volterra series in which the wave elevation is the input function such as described by
Yamanouchi(1974) and Vassilopoulos(1967). The series is usually truncated after second
order. The linear force is called the first order force while the quadratic force is called the
second order force or drift force. In the frequency domain, linear and quadratic transfer
functions are needed to describe these forces.

It is well known that the surge response of a TLP subjected to wave and current
loads consists of a wave frequency response, a mean response, and a low frequency or
slowly varying response at the TLP's surge natural frequency. High frequency responses
at the pitch natural frequency can also occur, although this has received less attention in the
literature. The wave frequency response is due predominantly to linear potential forces
acting on the hull and to a much lesser extent to viscous forces. The mean, low frequency,
and high frequency responses are due to higher order wave forces, in particular, quadratic
wave forces. These forces are due to both potential and viscous effects. In general, both

effects contribute significantly to the total drift force. Further, the viscous forces induce a



