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This book is a self-contained introduction to the basic structures of abstract
algebra: groups, rings, and fields. It is designed to be used in a one- or
two-semester course (see the chapter summaries that follow) and may also serve
for self-study. In addition, it contains several optional sections on special topics
and applications.

Because many students will not have had much experience with abstract
thinking, I introduce a number of important concrete examples (complex
numbers, two-by-two matrices, integers modulo », and permutations) at the
beginning and refer to them throughout the book. I chose these examples for
their importance and intrinsic interest and also because the student can do
actual computations almost immediately even though the examples are, in the
student’s view, quite abstract. Thus they provide a bridge to the abstract theory
and serve as prototype examples of the abstract structures themselves. For
example, the student will encounter composition and inverses of permutations
before having to fit these notions into the general framework of group theory.

I also emphasize the axiomatic development of these structures. Modern
algebra provides one of the best illustrations of the power of abstraction to
strip concrete examples of nonessential aspects, so as to reveal similarities
between ostensibly different objects and to suggest that a theorem about one
structure may have an analogue for a different structure. Achieving this sort of
facility with abstraction is one of the goals of the book, which goes hand in
hand with another goal: to teach the student how to do proofs. The proofs of
most theorems are at least as important for the techniques as for the theorems
themselves. Hence, whenever possible, I introduce techniques and use them in
examples before giving them in the general case as a proof. This approach
explains the large number of examples (nearly 500) in the book.

xi
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Of course, a generous supply of exercises is essential if this subject is to have
a lasting impact on students, and the book contains nearly 1500 exercises (many
with separate parts). Computational exercises appear first for the most part,
and the exercises are more or less in ascending order of difficulty. Hints are
given for the less straightforward problems. On the whole, I do not use exercises
to develop results that are needed later in the text, so not all exercises need to
be solved in order to continue with the book. Answers are provided to
odd-numbered (parts of) computational exercises and to selected theoretical
exercises.

An increasing number of students of abstract algebra come from outside
mathematics, and, for many of them, the lure of pure abstraction is not as
strong as for mathematicians. Therefore, I include applications of the theory
that make the subject more meaningful and lively for these students (and for
the mathematicians!). These include cryptography, linear codes, cyclic and BCH
codes, and combinatorics, as well as “theoretical” applications within mathe-
matics, such as the impossibility of the classical geometric constructions. The
inclusion of short historical notes and biographies should help the reader put
the material into perspective. In the same spirit, some classical “gems” appear
in optional sections (one example is the elegant proof of the fundamental
theorem of algebra in Section 6.6, using the structure theorem for symmetric
polynomials). In addition, I convey the modern flavor of the subject by
mentioning some of the unsolved problems in abstract algebra and by occasion-
ally stating more advanced theorems that extend beyond the results of the book.

Apart from that, the material is quite standard. The aim is to reveal the basic
facts about groups, rings, and fields and to give the student the working tools
for further study. The level of exposition rises slowly throughout the text, and
no prior knowledge of abstract algebra is required. Even linear algebra is not
needed. Except for a few well-marked instances, the aspects of linear algebra
that are needed are developed in the text. Calculus is completely unnecessary.
Some preliminary topics that are needed are covered in Chapter O (including
complex numbers and two-by-two matrices).

Although the chapters are necessarily arranged in a linear order, this
is by no means true of the contents, and the student (as well as the instructor)
should keep the chapter dependency diagram on page xiv in mind. A glance at
that diagram shows that Chapters 1-4 are the core of the book but that there is
enough flexibility in the remaining chapters to accommodate an instructor who
wants to include more than just the basics. The jump from Chapter 6 to Chapter
10 deserves mention. The student has a choice at the end of Chapter 6: either
change the subject and do some more group theory or continue with fields in
Chapter 10 (solvable groups are adequately reviewed in Section 10.3, so Chapter
9 is not necessary).

The chapter summaries that follow and the chapter dependency diagram
can assist in the preparation of a course syllabus. Our course of 36 lectures
touches Sections 0.3 and 0.4 lightly and then covers Chapters 1-4, except for
Sections 1.5, 2.11, 3.5, and 4.4-4.6.
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FEATURES
This book offers the following significant features:

Self-contained treatment

Preliminary material available in Chapter 0 for self-study or review
Integers modulo n and permutations done first as a bridge to abstraction
Nearly 500 worked examples to guide the student

Wide variety of exercises with selected answers

Gradual increase in level throughout the text

Applications to number theory, combinatorics, geometry, coding, and
equations

® Flexibility in syllabus construction and choice of optional topics (see
chapter dependency diagram)

® Historical notes and biographies

® Several special topics (for example, symmetric polynomials, nilpotent
groups, and finite-dimensional algebras)

® Solutions manual containing answers or solutions to all exercises

CHAPTER SUMMARIES

Preliminaries This chapter should be viewed as a primer on mathematics, as
it consists of material essential to any mathematics major. The treatment is
self-contained. I personally let students read Sections 0.1 and 0.2 on their own,
I touch the highlights in Sections 0.3 and 0.4, and review Section 0.5 briefly
(our students have had elementary linear algebra so I omit Section 0.6).

Integers and Permutations. This chapter covers the fundamental properties
of the integers and the two prototype examples of rings and groups: the integers
modulo n and the permutation group S,. These are done naively and allow the
students to do ring and group calculations in a concrete setting.

Groups. This chapter gives the basic facts of group theory, including cyclic
groups, Lagrange’s theorem, normal subgroups, factor groups, homomor-
phisms, and the isomorphism theorem. An optional application to linear codes
is included. Section 2.7 on groups of motions is also optional.

Rings. The basic properties of rings are developed: integral domains, char-
acteristic, rings of quotients, ideals, factorization, homomorphisms, and the
isomorphism theorem. The analogy between these notions and the correspond-
ing group-theoretic concepts is noted.

Polynomials. After the usual elementary facts are developed, irreducible
polynomials are discussed and the unique factorization of polynomials over a
field is proved. Then factor rings of polynomials over a field are described and



Xiv

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Preface

some finite fields are constructed. In an optional section, symmetric polynomials
are discussed and the fundamental structure theorem is proved.

Factorization in Integral Domains. Unique factorization domains are
characterized in terms of irreducibles and primes, and the fact that the property
is inherited by polynomial rings is proved. Principal ideal domains and
Euclidean domains are discussed. The chapter is self-contained, and the material
presented is not required elsewhere.

Fields. After a minimal amount of vector space theory is developed, splitting
fields are constructed and used to completely describe finite fields. This topic
is a direct continuation of Section 4.3. In optional sections, the classical results
on geometric constructions are derived, the fundamental theorem of algebra is
proved, and the theory of cyclic (and BCH) codes is developed.

Finitely Generated Abelian Groups. The fundamental theorem for finite
abelian groups is proved and then extended to the finitely generated case. This
material is self-contained and is not required elsewhere.

p-Groups and the Sylow Theorems. This chapter is a direct continuation
of Section 2.10. The class equation is given and is used to prove Cauchy’s
theorem and to derive the basic properties of p-groups. Then group actions

Chapter Dependency Diagram

0 Preliminaries I
-

\

1 Integers and
Permutations

2 Groups
Y
7 Finitely Generated .
Abelian Groups I 3 Riogs I

8 p-Groups and the
Sylow Theorems

4 Polynomials 5 Factorization I
|
I
: 6 Fields  f---——————-—-— .
l I
’ :
L . Y Y

I 9 Series of Subgroups I —————— 10 Galois Theory | 11 Algebras I

A broken arrow indicates minor dependency.
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are introduced, motivated by the class equation and an extended Cayley
theorem, and used to prove the Sylow theorems. An optional application to
combinatorics is also included.

Series of Subgroups. The chapter begins with composition series and the
Jordan—-Holder theorem. Then solvable series are introduced, including the
derived series, and the basic properties of solvable groups are proved. Finally,
central series are discussed and nilpotent groups are characterized as direct
products of p-groups. Sections 9.1 and 9.2 depend on Chapter 8 only in the
statement of some results, and so could be studied before Chapter 8.

Galois Theory. Galois groups of field extensions are defined, separable
elements are introduced, and the main theorem of Galois theory is proved. Then
the fact that polynomials of degree 5 or more are not solvable in radicals is
proved. All this requires only Chapter 6 (the reference to solvable groups in
Section 10.3 is adequately reviewed there). Finally, cyclotomic polynomials are
discussed and used, with the class equation, to prove Wedderburn’s theorem
that every finite division ring is a field.

Algebras. Finite-dimensional algebras are defined and the regular representa-
tion is given. Then the Wedderburn structure theorems are derived. Chapter
6 is needed only for the notion of dimension in a vector space.
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