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Preface

Billiards are mathematical models for many physical phenomena where one
or more particles move in a container and collide with its walls and/or with each
other. The dynamical properties of such models are determined by the shape of the
walls of the container, and they may vary from completely regular (integrable) to
fully chaotic. The most intriguing, though least elementary, are chaotic billiards.
They include the classical models of hard balls studied by L. Boltzmann in the
nineteenth century, the Lorentz gas introduced to describe electricity in 1905, as
well as modern dispersing billiard tables due to Ya. Sinai.

Mathematical theory of chaotic billiards was born in 1970 when Ya. Sinai pub-
lished his seminal paper [Sin70], and now it is only 35 years old. But during these
years it has grown and developed at a remarkable speed and has become a well-
established and flourishing area within the modern theory of dynamical systems
and statistical mechanics.

It is no surprise that many young mathematicians and scientists attempt to
learn chaotic billiards in order to investigate some of these and related physical
models. But such studies are often prohibitively difficult for many novices and
outsiders, not only because the subject itself is intrinsically quite complex, but to
a large extent because of the lack of comprehensive introductory texts.

True, there are excellent books covering general mathematical billiards [Ta95,
KT91, KS86, GZ90, CFS82], but these barely touch upon chaotic models. There
are surveys devoted to chaotic billiards as well (see [DS00, HB00, CMO03]) but
those are expository; they only sketch selective arguments and rarely get down
to ‘nuts and bolts’. For readers who want to look ‘under the hood’ and become
professional (and we speak of graduate students and young researchers here), there
is not much choice left: either learn from their advisors or other experts by way of
personal communication or read the original publications (most of them very long
and technical articles translated from Russian). Then students quickly discover
that some essential facts and techniques can be found only in the middle of long
dense papers. Worse yet, some of these facts have never even been published — they
exist as folklore.

This book attempts to present the fundamentals of the mathematical theory
of chaotic billiards in a systematic way. We cover all the basic facts, provide full
proofs, intuitive explanations and plenty of illustrations. Our book can be used
by students and self-learners. It starts with the most elementary examples and
formal definitions and then takes the reader step by step into the depth of Sinai’s
theory of hyperbolicity and ergodicity of chaotic billiards, as well as more recent
achievements related to their statistical properties (decay of correlations and limit
theorems).

ix
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The reader should be warned that our book is designed for active learning.
It contains plenty of exercises of various kinds: some constitute small steps in the
proofs of major theorems, others present interesting examples and counterexamples,
yet others are given for the reader’s practice (some exercises are actually quite
challenging). The reader is strongly encouraged to do exercises when reading the
book, as this is the best way to grasp the main concepts and eventually master the
techniques of billiard theory.

The book is restricted to two-dimensional chaotic billiards, primarily dispersing
tables by Sinai and circular-arc tables by Bunimovich (with some other planar
chaotic billiards reviewed in the last chapter). We have several compelling reasons
for such a confinement. First, Sinai’s and Bunimovich’s billiards are the oldest
and best explored (for instance, statistical properties are established only for them
and for no other billiard model). The current knowledge of other chaotic billiards
is much less complete; the work on some of them (most notably, hard ball gases)
is currently under way and should perhaps be the subject of future textbooks.
Second, the two classes presented here constitute the core of the entire theory of
chaotic billiards. All its apparatus is built upon the original works by Sinai and
Bunimovich, but their fundamental works are hardly accessible to today’s students
or researchers, as there have been no attempts to update or republish their results
since the middle 1970s (after Gallavotti’s book [Ga74]). Our book makes such an
attempt. We do not cover polygonal billiards, even though some of them are mildly
chaotic (ergodic). For surveys of polygonal billiards see [Gut86, Gut96].

We assume that the reader is familiar with standard graduate courses in math-
ematics: linear algebra, measure theory, topology, Riemannian geometry, complex
analysis, probability theory. We also assume knowledge of ergodic theory. Although
the latter is not a standard graduate course, it is absolutely necessary for reading
this book. We do not attempt to cover it here, though, as there are many excellent
texts around [Wa82, Man83, KH95, Pet83, CFS82, DS00, BrS02, Dev89,
Sin76| (see also our previous book, [CMO03]). For the reader’s convenience, we
provide basic definitions and facts from ergodic theory, probability theory, and
measure theory in the appendices.

Acknowledgements. The authors are grateful to many colleagues who have
read the manuscript and made numerous useful remarks, in particular P. Balint,
D. Dolgopyat, C. Liverani, G. Del Magno, and H.-K. Zhang. It is a pleasure
to acknowledge the warm hospitality of IMPA (Rio de Janeiro), where the final
version of the book was prepared. We also thank the anonymous referees for helpful
comments. Last but not least, the book was written at the suggestion of Sergei
Gelfand and thanks to his constant encouragement. The first author was partially
supported by NSF grant DMS-0354775 (USA). The second author was partially
supported by a Proyecto PDT-Conicyt (Uruguay).
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Symbols and notation

billiard table Section
boundary of the billiard table

union of dispersing components of the boundary I’
union of focusing components of the boundary I'
union of neutral (flat) components of the boundary T'
regular part of the boundary of billiard table

Corner points on billiard table

degree of smoothness of the boundary I" = 0D
normal vector to the boundary of billiard table
tangent vector to the boundary of billiard table
(signed) curvature of the boundary of billiard table
billiard flow

the phase space of the billiard flow

part of phase space where dynamics is defined at all times
projections of 2 to the position and velocity subspaces
angular coordinate in phase space {2

Jacobi coordinates in phase space (2

invariant measure for the flow ®*

collision map or billiard map

collision space (phase space of the billiard map)

part of M where all iterations of F are defined

part of M where all iterations of F are smooth
coordinates in the collision space M

invariant measure for the collision map F

boundary of the collision space M

singularity set for the map F+!

singularity set for the map F*"

same as Up>1S+n

connected component of M \ S,, containing z

(= dyp/dr) slope of smooth curves in M

return time (intercollision time)

mean return time (mean free path)

Lyapunov exponent at the point x

stable and unstable tangent subspaces at the point z
stable and unstable cones at the point z

(minimal) factor of expansion of unstable vectors

the curvature of wave fronts

xi

2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.3
2.6
2.1
2.5
2.5
2.5
2.5
2.6
3.6
2.6
2.9
2.9
2.9
2.11
2.10
2.12
2.10
2.10
2.11
4.11
4.11
3.10
2.9
2.12
3.1
3.1
3.13
4.4
3.7



SYMBOLS AND NOTATION

collision parameter

homogeneity strips

lines separating homogeneity strips

minimal nonzero index of homogeneity strips

new collision space (union of homogeneity strips)

holonomy map

involution map

Lebesgue measure on lines and curves

length of the curve W

length of the curve W in the p-metric

Jacobian of the restriction of F™ to the curve W at the point z € W
distance from z € W to the nearest endpoint of the curve W
distance from F"(x) to the nearest endpoint of the component

of F™(W) that contains F"(z)

distance from z € W to the nearest endpoint of W in the p-metric
u-SRB density on unstable manifold W

‘same order of magnitude’

ceiling function for suspension flows

3.6
5.3
5.3
5.3
5.4
5.7
2.14
5.9
4.5
4.5
5.2
4.12

5.9
4.13
5.2
4.3
2.9
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CHAPTER 1

Simple examples

We start with a few simple examples of mathematical billiards, which will help
us introduce basic features of billiard dynamics. This chapter is for the complete
beginner. The reader familiar with some billiards may safely skip it — all the formal
definitions will be given in Chapter 2.

1.1. Billiard in a circle

Let D denote the unit disk 22+y? < 1. Let a point-like (dimensionless) particle
move inside D with constant speed and bounce off its boundary 0D according to
the classical rule the angle of incidence is equal to the angle of reflection; see below.

Denote by q; = (x¢,y:) the coordinates of the moving particle at time ¢ and by
vy = (ug, wy) its velocity vector. Then its position and velocity at time ¢ + s can be

computed by

Tiys = Tg + UtS Utts = Ut
(1.1) ° °
Yit+s = Yt + WS Wits = W

as long as the particle stays inside D (makes no contact with D).

When the particle collides with the boundary 8D = {z? + y? = 1}, its velocity
vector v gets reflected across the tangent line to 9D at the point of collision; see
Fig. 1.1.

FiGuRrE 1.1. Billiard motion in a circle.

EXERCISE 1.1. Show that the new (postcollisional) velocity vector is related to
the old (precollisional) velocity by the rule

(1‘2) eV — ,Uold -9 <Uold, n> n,

where n = (z,y) is the unit normal vector to the circle z2 + y? = 1 and (v,n) =
uz + wy denotes the scalar product.



2 1. SIMPLE EXAMPLES

After the reflection, the particle resumes its free motion (1.1) inside the disk
D, until the next collision with the boundary 9D. Then it bounces off again, and
so on. The motion can be continued indefinitely, both in the future and the past.

For example, if the particle runs along a diameter of the disk, its velocity vector
will get reversed at every collision, and the particle will keep running back and forth
along the same diameter forever. Other examples of periodic motion are shown in
Fig. 1.2, where the particle traverses the sides of some regular polygons.

(T
VERY,

o

Y

FIGURE 1.2. Periodic motion in a circle.

In the studies of dynamical systems, the primary goal is to describe the evolu-
tion of the system over long time periods and its asymptotic behavior in the limit
t — oo. We will focus on such a description.

Let us parameterize the unit circle % + y% = 1 by the polar (counterclockwise)
angle 6 € [0, 2] (since 0 is a cyclic coordinate, its values 0 and 27 are identified).
Also, denote by ¢ € [0, 7] the angle of reflection as shown in Fig. 1.1.

REMARK 1.2. We note that 6 is actually an arc length parameter on the circle
0D; when studying more general billiard tables D, we will always parameterize the
boundary 9D by its arc length. Instead of v, a reflection can also be described by
the angle ¢ = /2 — ¢ € [—m/2,7/2] that the postcollisional velocity vector makes
with the inward normal to dD. In fact, all principal formulas in this book will be
given in terms of ¢ rather than 1, but for the moment we proceed with 1.

For every n € Z, let 6,, denote the nth collision point and ,, the corresponding
angle of reflection.

EXERCISE 1.3. Show that

Ont1 =6 + 20, (mod 27)
(1.3) Ynt1 = Pn

for all n € Z.

We make two important observations now:

e All the distances between reflection points are equal.
o The angle of reflection remains unchanged.



1.1. BILLIARD IN A CIRCLE 3

COROLLARY 1.4. Let (6g,%0) denote the parameters of the initial collision.
Then

0, = 6o + 2n3g (mod 2m)
’(/)n = 'll}O-

Every collision is characterized by two numbers: 8 (the point) and 9 (the angle).
All the collisions make the collision space with coordinates 6 and 1 on it. It is a
cylinder because 6 is a cyclic coordinate; see Fig. 1.3. We denote the collision space
by M. The motion of the particle, from collision to collision, corresponds to a map
F: M — M, which we call the collision map. For a circular billiard it is given by
equations (1.3).

Observe that F leaves every horizontal level Cy, = {¢ = const} of the cylinder
M invariant. Furthermore, the restriction of F to Cy is a rotation of the circle Cy,
through the angle 2¢). The angle of rotation continuously changes from circle to
circle, growing from 0 at the bottom {¢ = 0} to 27 at the top {¢) = '} (thus the
top and bottom circles are actually kept fixed by F). The cylinder M is “twisted
upward” (“unscrewed”) by the map F; see Fig. 1.3.

FIGURE 1.3. Action of the collision map F on M.

Rigid rotation of a circle is a basic example in ergodic theory; cf. Appendix C.
It preserves the Lebesgue measure on the circle. Rotations through rational angles
are periodic, while those through irrational angles are ergodic.

EXERCISE 1.5. Show that if ¢ < 7 is a rational multiple of 7, i.e. ¥/m =m/n
(irreducible fraction), then the rotation of the circle Cy, is periodic with (minimal)
period n, that is every point on that circle is periodic with period n, i.e. F™(0,%) =
(0, ) for every 0 < 6 < 27.

If /7 is irrational, then the rotation of C, is ergodic with respect to the
Lebesgue measure. Furthermore, it is uniquely ergodic, which means that the in-
variant measure is unique. As a consequence, for every point (v, 6) € Cy, its images
{6 + 2ny, n € Z} are dense and uniformly distributed! on Cy; this last fact is
sometimes referred to as Weyl’s theorem [Pet83, pp. 49-50].

1A sequence of points z, € C on a circle C is said to be uniformly distributed if for any
interval I C C we have limy_,oc #{n: 0 <n < N, an € I'}/N = length(I)/length(C).



4 1. SIMPLE EXAMPLES

EXERCISE 1.6. Show that every segment of the particle’s trajectory between
consecutive collisions is tangent to the smaller circle Sy = {22 + y? = cos? ¢}
concentric to the disk D. Show that if 1/ is irrational, the trajectory densely fills
the ring between D and the smaller circle Sy, (see Fig. 1.4).

Remark: One can clearly see in Fig. 1.4 that the particle’s trajectory looks
denser near the inner boundary of the ring (it “focuses” on the inner circle). If the
particle’s trajectory were the path of a laser ray and the border of the unit disk
were a perfect mirror, then it would feel “very hot” there on the inner circle. For
this reason, the inner circle is called a caustic (which means “burning” in Greek).

FIGURE 1.4. A nonperiodic trajectory.

EXERCISE 1.7. Can the trajectory of the moving particle be dense in the entire
disk D? (Answer: No.)

EXERCISE 1.8. Does the map F: M — M preserve any absolutely continuous
invariant measure du = f(6,1) dfdy on M? Answer: Any measure whose density
f(8,v9) = f(v) is independent of  is F-invariant.

Next, we can fix the speed of the moving particle due to the following facts.

EXERCISE 1.9. Show that ||v;|| = const, so that the speed of the particle
remains constant at all times.

EXERCISE 1.10. Show that if we change the speed of the particle, say we set
lv]lnew = ¢||v|lola with some ¢ > 0, then its trajectory will remain unchanged, up

to a simple rescaling of time: ¢P*V = ¢%9 and vP*¥ = v2ld for all t € R.

Thus, the speed of the particle remains constant and its value is not important.
Tt is customary to set the speed to one: |[v|| = 1. Then the velocity vector at time
t can be described by an angular coordinate w; so that vy = (coswy,sinw;) and
wy € [0,27] with the endpoints 0 and 27 being identified.

Now, the collision map F: M — M represents collisions only. To describe the
motion of the particle inside D, let us consider all possible states (g, v), where g € D
is the position and v € S! is the velocity vector of the particle. The space of all
states (called the phase space) is then a three-dimensional manifold Q: = D x S,
which is, of course, a solid torus (doughnut).

The motion of the billiard particle induces a continuous group of transforma-
tions of the torus (2 into itself. Precisely, for every (g,v) €  and every t € R the
billiard particle starting at (g,v) will come to some point (g;,v;) € Q at time ¢.
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Thus we get a map (g,v) — (g, v¢) on , which we denote by ®. The family of
maps {®*} is a group; i.e. ®' o % = ®!** for all t,s € R. This family is called the
billiard flow on the phase space.

Let us consider a modification of the circular billiard. Denote by D, the upper
half disk 2 + 4% < 1, y > 0, and let a point particle move inside D4 and bounce
off 0D,. (A delicate question arises here: what happens if the particle hits 0D at
(1,0) or (—1,0), since there is no tangent line to 9D at those points? We address
this question in the next section.)

FiGURE 1.5. Billiard in the upper half circle.

A simple trick allows us to reduce this model to a billiard in the full unit disk
D. Denote by D_ the closure of D\ Dy, i.e. the mirror image of D, across the
x axis L = {y = 0}. When the particle hits L, its trajectory gets reflected across
L, but we will also draw its continuation (mirror image) below L. The latter will
evolve in D_ symmetrically to the real trajectory in D, until the latter hits L
again. Then these two trajectories will merge and move together in D, for a while
until the next collision with L, at which time they split again (one goes into D_
and the other into D), etc.

It is important that the second (imaginary) trajectory never actually gets re-
flected off the line L; it just crosses L every time. Thus it evolves as a billiard
trajectory in the full disk D as described above. The properties of billiard trajec-
tories in D4 can be easily derived from those discussed above for the full disk D.
This type of reduction is quite common in the study of billiards.

EXERCISE 1.11. Prove that periodic trajectories in the half-disk D, correspond
to periodic trajectories in the full disk D. Note, however, that the period (the
number of reflections) may differ.

EXERCISE 1.12. Investigate the billiard motion in a quarter of the unit disk
2 +y2<1,2>0,y>0.

1.2. Billiard in a square

Here we describe another simple example — a billiard in the unit square D =
{(z,y): 0 < z,y < 1}; see Fig. 1.6. The laws of motion are the same as before, but
this system presents new features.

First of all, when the moving particle hits a vertex of the square D, the reflection
rule (1.2) does not apply (there is no normal vector n at a vertex). The particle



