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Preface

It has been recognised for a long time that a photon has spin angular momentum,
observable macroscopically in a light beam as polarisation. It is less well known that a
beam may also carry orbital angular momentum linked to its phase structure. Although
both forms of angular momentum have been identified in electromagnetic theory for very
many years, it is only over the past decade that orbital angular momentum has been the
subject of intense theoretical and experimental study. The concepts combine neatly into
optical angular momentum.

This book is designed to be an accessible survey of the current status of optical angular
momentum. It reproduces 44 original papers arranged in eight sections. Each section has a
brief introduction to set the reproduced papers in the context of a wider range of related
work.

It is a pleasure to thank, in the same order as their papers appear here, G Nienhuis,
MV Berry, JM Vaughan, C Tamm, JP Woerdman, L. Torner, MS Soskin, NR Heckenberg,
A Ashkin, H Rubinsztein-Dunlop, SJ van Enk, DV Petrov, BA Garetz, I Bialynicki-
Birula, WJ Firth, M Segev and A Zeilinger for being willing to have their work and that
of their co-authors reproduced.

We are pleased, too, to acknowledge the publishers who allowed us to reproduce
papers originally published in their journals: the Royal Society for paper 1.1; the
American Physical Society for papers 1.2, 2.1, 2.3, 2.4, 2.7, 3.6, 3.10, 4.2, 4.3, 5.1, 5.3, 6.4,
6.6, 7.1, 7.2, 7.3, 8.2 and 8.3; the Optical Society of America for papers 3.2, 3.3, 4.1, 4.4, 6.1
and 6.3; SPIE — the International Society for Optical Engineering for 2.5; Elsevier Science
B.V for papers 2.2, 2.6, 2.9, 3.4, 3.5, 3.11, 3.12, 6.2 and 6.5; Kluwer Academic Publishers
for 3.9; Nature for paper 8.1; EDP Sciences for 2.8; the American Association of Physics
Teachers and the American Institute of Physics for 3.1 and 3.8; while four papers were
published by the Institute of Physics Publishing, namely 1.3, 2.10, 3.7 and 5.2.

We wish to express, too, our gratitude to the many friends, too numerous to list here,
with whom we have enjoyed exploring the fascinating topic of optical angular momentum.

Optical angular momentum is a new area of physics, but one for which the foundations
have been firmly established. It will be very interesting to see how it develops over the next
few years.

L Allen
Stephen M Barnett
Miles J Padgett

August 2002
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Section 1

INTRODUCTION

That light should have mechanical properties has been known, or at least suspected, since
Kepler proposed that the tails of comets were due to radiation pressure associated with light
from the sun. A quantitative theory of such effects became possible only after the develop-
ment of Maxwell’s unified theory of electricity, magnetism and optics. However, although
his treatise on electromagnetism (1.1) contains a calculation of the radiation pressure at
the earth’s surface, there is little more on the mechanical effects of light. It was Poynting
who quantified the momentum and energy flux associated with an electromagnetic field
(1.2). In modern terms, the momentum per unit volume associated with an electromagnetic
wave is given by £)E x B. The angular momentum density is, naturally enough, the cross
product of this with position, that is r x ¢3(E x B) (1.3).

Poynting reasoned that circularly polarised light must carry angular momentum (1.4,
Paper 1.1). His argument proceeded by analogy with the wave motion associated with a
line of dots marked on a rotating cylindrical shaft. His calculation showed that EX\/2r is
the angular momentum transmitted through a plane in unit time, per unit area, where E
is Poynting’s notation for the energy per unit volume and A is the wavelength. When the
energy of each photon crossing the surface is associated with Aw, we obtain the result
that circularly polarised photons each carry A units of angular momentum.

Poynting’s paper concludes with a proposal for measuring the angular momentum asso-
ciated with circularly polarised light. His idea was that circularly polarised light passing
through a large number of suspended quarter-wave plates, and so becoming linearly
polarised, should give up all its angular momentum and so induce a rotation in the suspen-
sion. He concludes, however, that “my present experience of light-forces does not give me
much hope that the effect could be detected”. The effect was detected, however, about
twenty years after Poynting’s death by Beth (1.5, Paper 1.2) who used a single quarter
wave plate, together with a mirror which sent the light back through the plate enhancing
the torque on the suspension. He showed that the same quantitative result is obtained for
the classical torque as for that which arises from the assumption that each photon carried
an angular momentum #.

Careful examination of gr x (E x B) shows that polarisation does not account for all of
the angular momentum that can be carried by the electromagnetic field. The part associated
with polarisation is known as spin, but in addition there is also an orbital contribution.
Until recently, however, the discussion of spin and orbital angular momenta for light
was largely restricted to textbooks and related to non-specific forms for the electric
field. Current research activity in this area originated with the realisation that physically
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realisable light beams, familiar from the paraxial optics of laser theory, can carry a well-
defined quantity of orbital angular momentum for each photon (1.6, Paper 2.1). An exten-
sive review of orbital angular momentum was published in 1999 (1.7). This was followed,
in 2002, by the publication of a special issue of Journal of Optics B devoted to atoms and
angular momentum of light. The introduction to that special issue provides a brief overview
of the current status of the field and is reprinted here as the natural introduction to this
book (1.8, Paper 1.3).

REFERENCES

1.1 JC Maxwell, 1891, A Treatise on Electricity and Magnetism (Oxford: Clarendon Press)
Art. 793. These volumes are available in the series Oxford Classic Texts in the Physical
Sciences (Oxford: Oxford University Press).

1.2 JH Poynting, 1884, Phil. Trans. 174, 343. This paper is also available in 1920, Collected
Scientific Papers by John Henry Poynting (Cambridge: Cambridge University Press).

1.3 JD Jackson, 1999, Classical Electrodynamics 3rd edn (New York: Wiley) p. 608.

1.4 JH Poynting, 1909, Proc. Roy. Soc. A 82 560.

1.5 RA Beth, 1936, Phys. Rev. 50 115.

1.6 L Allen, MW Beijersbergen, RJC Spreeuw and JP Woerdman, 1992, Phys. Rev. A 45 8185.

1.7 L Allen, MJ Padgett and M Babiker, 1999, Prog. Opt. 39 291.

1.8 L Allen, 2002, JJ. Opt. B: Quantum Semiclass. Opt. 4 S1.



PAPER 1.1

The Wave Motion of a Revolving Shaft, and a
Suggestion as to the Angular Momentum in a Beam of
Circularly Polarised Light

By JH Poynring, ScD, FRS
(Received June 2,—Read June 24, 1909)

When a shaft of circular section is revolving uniformly, and is transmitting power
uniformly, a row of particles originally in a line parallel to the axis will lie in a spiral of
constant pitch, and the position of the shaft at any instant may be described by the
position of this spiral.

Let us suppose that the power is transmitted from left to right, and that as viewed from
the left the revolution is clockwise. Then the spiral is a left-handed screw. Let it be on the
surface, and there make an angle ¢ with the axis. Let the radius of the shaft be a, and let
one turn of the spiral have length \ along the axis. We may term )\ the wave-length of the
spiral. We have tane = 2ra/\. If the orientation of the section at the origin at time ¢ is
given by 6 = 27Nt¢, where N is the number of revolutions per second, the orientation of
the section at x is given by

X 27
()—27rNt—atanc —T(N)\t—x), (1)

which means movement of orientation from left to right with velocity NA.
The equation of motion for twist waves on a shaft of circular section is

d*0 5 d%0
az =V g @

where U,? = modulus of rigidity/density = n/p.

Though (1) satisfies (2), it can hardly be termed a solution for dzf)/dtz, and dza/dx2 in
(1) are both zero. But we may adapt a solution of (2) to fit (1) if we assume certain conditions
in (1).

The periodic value

0= (—)sin277r(U,lt —x)
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satisfies (2), and is a wave motion with velocity U, and wave-length /. Make [ so great that
for any time or for any distance under observation U,t/l and x/[ are so small that the angle
may be put for the sine. Then

9:62%(U,lt—x). (3)
This is uniform rotation. It means that we only deal with the part of the wave near a
node, and that we make the wave-length [ so great that for a long distance the
“displacement curve” obtained by plotting # against ¢ coincides with the tangent at the
node. We must distinguish, of course, between the wave-length [ of the periodic motion
and the wave-length A of the spiral.
We can only make (1) coincide with (3) by putting

©/l=1/A and NX=U,.

Then it follows that for a given value of N, the impressed speed of uniform rotation,
there is only one value of A or one value of ¢ for which the motion may be regarded
as part of a natural wave system, transmitted by the elastic forces of the material
with velocity = /(n/p). There is therefore only one “natural” rate of transmission of
energy.

The value of ¢ is given by

tane = 2ma/\ = 2raN/N) = 27aN/U,, = 27aN+/(p/n).

Suppose, for instance, that a steel shaft with radius a¢ = 2cm, density p = 7.8, and
rigidity n = 10" is making N = 10 revs. per sec. We may put tane = ¢, since it is very
small. The shaft is twisted through 27 in length A or through 27/)\ per centimetre, and
the torque across a section is

G = inra'2n/\ = nra’Ny/(p/n),
since

U, 1 n
N NV

A

The energy transmitted per second is
27NG = 27°a*N?\/(np).

Putting 1 H.P. = 746 x 10" ergs per second, this gives about 38 H.P.

But a shaft revolving with given speed N can transmit any power, subject to the
limitation that the strain is not too great for the material. When the power is not that
“naturally” transmitted, we must regard the waves as ‘“forced.” The velocity of
transmission is no longer U,, and forces will have to be applied from outside in addition
to the internal elastic forces to give the new velocity.

Let H be the couple applied per unit length from outside. Then the equation of motion
becomes

da* U2 d*9 2H
dZ " a2 gt
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where 17a® is the moment of inertia of the cross section. Assuming that the condition

travels on with velocity U unchanged in form,

do df 5, d%0
o =-U- and H :%m“(U,,Z)W,
or H has only to be applied where d29/dx2 has value, that is where the twist is changing.
The following adaptation of Rankine’s tube method of obtaining wave velocities” gives
these results in a more direct manner. Suppose that the shaft is indefinitely extended
both ways. Any twist disturbance may be propagated unchanged in form with any
velocity we choose to assign, if we apply from outside the distribution of torque which,
added to the torque due to strain, will make the change in twist required by the given
wave motion travelling at the assigned speed.
Let the velocity of propagation be U from left to right, and let the displacement at any
section be 6, positive if clockwise when seen from the left. The twist per unit length is
9 1do 0
dx Udt U’

The torque across a section from left to right in clockwise direction is

Let the shaft be moved from right to left with velocity U; then the disturbance 1s fixed
in space, and if we imagine two fixed planes drawn perpendicular to the axis, one, A, at a
point where the disturbance is 6 and the other, B, outside the wave system, where there is
no disturbance, the condition between A and B remains constant, except that the matter
undergoing that condition is changing. Hence the total angular momentum between A
and B is constant. But no angular momentum enters at B, since the shaft is there
untwisted and has merely linear motion. At A, then, there must be on the whole no
transfer of angular momentum from right to left. Now, angular momentum is transferred
in three ways:—

1. By the carriage by rotating matter. The angular momentum per unit length is % pwa49,
and since length U per second passes out at A, it carries out % p7ra49U.

2. By the torque exerted by matter on the right of A on matter on the left of A. This
takes out —nwa*d/2U.

3. By the stream of angular momentum by which we may represent the forces applied
from outside to make the velocity U instead of U,,.

If H is the couple applied per unit length, we may regard it as due to the flow of angular
momentum L along the shaft from left to right, such that H = —dL/dx. There is then
angular momentum L flowing out per second from right to left. Since the total flow due
to (1), (2), and (3) is zero,

lpra'U — nra'6/2U0 — L = 0,

and

4, 44 4
L=22 (-5 - U = - T SO - U,

" ‘Phil. Trans.,” 1870, p. 277.
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If H = 0, either U = U, when the velocity has its “natural value,” or d*0/dx* = 0, and
the shaft is revolving with uniform twist in the part considered.

Now put on to the system a velocity U from left to right. The motion of the shaft
parallel to its axis is reduced to zero, and the disturbance and the system H will travel
on from left to right with velocity U. A “forced” velocity does not imply transfer of
physical conditions by the material with that velocity. We can only regard the
conditions as reproduced at successive points by the aid of external forces. We may
illustrate this point by considering the incidence of a wave against a surface. If the
angle of incidence is i and the velocity of the wave is V, the line of contact moves over
the surface with velocity v = V/sini, which may have any value from V to infinity. The
velocity v is not that of transmission by the material of the surface, but merely the
velocity of a condition impressed on the surface from outside.

Probably in all cases of transmission with forced velocity, and certainly in the case
here considered, the velocity depends upon the wave-length, and there is dispersion.

With a shaft revolving N times per second U = N, and it is interesting to note that the
group velocity U — AdU/d)\ is zero. It is not at once evident what the group velocity
signifies in the case of uniform rotation. In ordinary cases it is the velocity of travel of
the “beat” pattern, formed by two trains of slightly different frequencies. The complete
“beat” pattern is contained between two successive points of agreement of phase of the
two trains. In our case of superposition of two strain spirals with constant speed of
rotation, points of agreement of phase are points of intersection of the two spirals. At
such points the phases are the same, or one has gained on the other by 27. Evidently as
the shaft revolves these points remain in the same cross-section, and the group velocity
is zero.

With deep water waves the group velocity is half the wave velocity, and the energy
flow is half that required for the onward march of the waves.” The energy flow thus
suffices for the onward march of the group, and the case suggests a simple relation
between energy flow and group velocity.

" But the simplicity is special to unforced trains of waves. Obviously, it does not hold
when there are auxiliary working forces adding or subtracting energy along the waves.
For the revolving shaft the simple relation would give us no energy flow, whereas the
strain existing in the shaft implies transmission of energy at a rate given as follows.

The twist per unit length is df/dx, and therefore the torque across a section is
—1nma' d/dx, or Inma'd/U, since df/dx = —0/U. The rate of working or of energy flow
across the section is i nra'6?/U.

The relation of this to the strain and kinetic energy in the shaft is easily found. The
strain energy per unit length being % (couple x twist per unit length) is é nra*(d/dx)?,
which is %mra492 / U? The kinetic energy per unit length 1is %pmz‘*() , or, putting
p=n/U,7% is %nﬂa49‘2/U”2.

In the case of natural velocity, for which no working forces along the shaft are needed,
when U = U, = /(n/p), the kinetic energy is equal to the strain energy at every point and
the energy transmitted across a section per second is that contained in length U,,.

‘0. Reynolds, ‘Nature,” August 23, 1877; Lord Rayleigh, ‘Theory of Sound,’ vol. 1, p. 477.



