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Preface

Throughout industries, pressure for change now comes from all directions—
technical, financial, environmental, political, and social. The roadmap for
new and developing processes, technologies, and materials provides a vision
that shows company-by-company efforts aren’t enough—implementing such
a vision requires extensive value/chain collaboration and public/private
partnerships. To ensure success in a highly competitive environment, the
government must be part of the business strategy, especially long-term fund-
ing of research and development. Technical societies could also be a prime
mover and act as a catalyst/facilitator at times.

In the research and development of new materials or variations of new
processes, the word “innovation” for the scientist means something alto-
gether different from the interpretation by the general public. According
to Margaret W. Hunt, editor of Advanced Materials & Processes magazine,
“Innovation is really a state of mind, a fundamental attitude of willingness
to try new and sometimes radically different approaches to problems.” This
is the state of mind of the engineers who help drive the innovations that
prime the U.S. economy. No one can predict the wonders that will become
commonplace in the future, but it is safe to predict that they will be based on
unseen developments.

For the general public, innovation brings to mind such products as cell
phones and laptop computers, not advanced materials and process technolo-
gies. However, the inventors of these devices know that without advanced
materials, joining methods, processing, and testing technologies, clunky
telephones and typewriters would still be the norm, not to mention heavy
and inefficient automobiles. These innovations that save money and reduce
costs are often hidden from the ultimate consumer, who might not realize
that the improved mileage in a new car is partially due to a metal diecast or
molded plastic part that weighs less, that better safety is provided by stron-
ger steel, and that new coating methods make the car look better and last
longer. These things are invisible and the engineers who design and develop
them often do not receive the credit they deserve.

A roadmap that was created in 1998 to identify the robotics and intelligent
machine (RIM) goals by the year 2020 is now in place. This national initia-
tive called for focusing and strengthening research in intelligent systems to
strengthen the entire industry—currently U.S. companies lead the world in
sensory devices and algorithms. Intelligent machines are advanced sensory
devices to collect information about their environment and use sophisti-
cated algorithms to respond to the information. This RIM science will benefit
industry and society.

ix
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Intelligent machines can provide value to companies in all segments of
manufacturing. An important question to ask is: What can RIM help you
do better? For example, the high-value consumer electronics manufacturers
want intelligent production systems that can rapidly and easily accommo-
date new product lines; they want intelligent systems to ensure the man-
ufacturability of a product line and autonomously reprogram themselves
when a new design is introduced. The welding industry wants an intelligent
machine that will result in a repeatable, high-quality, structurally reliable
weldment.

Many of the manufacturing processes described in this book can, and
likely will, benefit from the incorporation of an intelligent machine into the
processing and fabrication cycle. For example, a project at the Idaho National
Engineering & Environmental Laboratory (INEEL) currently involves intelli-
gent welding machines that incorporate both knowledge of welding physics
and empirical learning capabilities. Currently, welding is considered as an
industrial art based on a welder’s manual skills or very simple duplication
of these skills by an automatic (but dumb) machine. A typical approach to a
machine control problem is to have a central body of intelligence (and con-
trol) in the machine. However, researchers at INEEL have developed a con-
ceptual design of a machine using distributed learning and intelligence. The
design is loosely based on biological models of social insects. For example,
in an ant colony each ant functions according to local rules of behavior. Thus
methods of learning and behavior modification have been developed that
ensure global stability and optimization of the total machine. Researchers
believe a qualitative understanding of the relationships between local costs
and global subcosts can be used to develop future models for a welding pro-
cess, as well as in more traditional control systems for welding processes.

In this 21st century, there are numerous challenges that are being overcome
and in some instances have been overcome. Increased emphasis has been put
on new materials, new fuels and propulsion technologies, advanced manu-
facturing, and predictive engineering that will put tremendous demands on
our educational infrastructure and necessitate changes in curricula. Various
industrial learning centers have been actively engaged during the past 10
years with design-oriented and engineering schools, industry scientists and
engineers who work with materials, and advanced processes in activities
including seminars, workshops, forums, and national conferences.

The initiatives mentioned here require steadfast commitment to long-term
research and development, advocacy, and communication. Individual and
corporate participation is, of course, critical.

This book will discuss environmental issues and safety in regard to
processes and processing. In fact, all products manufactured need energy
for material and production. Professor Timothy G. Gutowski, Faculty of
Mechanical Energy at MIT, has received a grant from the National Science
Foundation (NSF) to conduct research into the energy use of manufactur-
ing processes of materials. “Manufacturing processes can be thought of as
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products with a huge energy appetite,” Gutowski says. “These processes
contribute to global warming, but are not visible to the public, unlike gas-
guzzling SUVs or images of melting ‘polar ice caps.” Many people are not
aware of the energy requirement for a lot of manufacturing processes,
claims Gutowski. For example, the whole of the Western composites indus-
try should be concerned. Upcoming economies such as China, India, Korea,
and Malaysia are rapidly developing composite technologies and production
processing.

Composites and energy could well be the criteria for future success in
public transport. The subject of composites and energy is strongly related
to population growth, mobility, and transport systems. Countries that have
new economies are less hindered by rules, regulations, laws, and standards,
and they are able to start from a different playing field. These countries have
the best of both worlds—their own low cost of manufacturing and a highly
educated population, and the loan of the often rusted technology know-how
from Western countries. Southeast Asia is going to be in strong competition
with the Western world. This should be a major concern to industry in the
future. However, being different may be the only way the Western world of
industries can sustain, by being one step ahead of the rest of the world and
focus on what is the most important area for future growth and develop-
ment; that is, resin transfer molding (RTM) composites and energy.

Speaking about energy, fresh research out of Yale University concludes
that the energy required to produce nickel-containing, austenitic stainless
steel from scrap is less than a third of the energy used to produce stainless
steel from virgin sources. As an additional environmental bonus, recycling
produces just 30% of the CO, emissions. Already one of the most recycled
materials in the world, stainless steel could, theoretically, be made entirely
from scrap if there weren't serious limitations on the availability of this
material. Ironically, one of the main benefits of the material—its durability—
limits its recycling potential: stainless steel structures and products tend to
last a long, long time.

Current recycling operations reduce primary energy use by about 33%
and CO, by 32% compared with production from virgin sources alone. But if
stainless steel were to be produced solely from scrap (a merely hypothetical
scenario), about 67% of the energy could be saved and CO, emissions cut by
70%.

“It confirms common sense,” says Barbara Reck, a research associate at the
School of Forestry and Environmental Studies at Yale. “The biggest energy
use is in the mining and smelting phase, and you don’t have to go through
this phase using scrap. But now calculations have shown this systematically
and the hypothesis has been confirmed.” These findings have implications
for the thousands of end-users of nickel-containing stainless steels.

In today’s environmentally conscientious marketplace, customers want
assurance that the products they buy will not contribute to climate change.
They prefer to contribute to a sustainable world. Today products are
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advertised as being made of materials that have been validated, by one asso-
ciation or another, as safe for the environment. For example, in Northbrook,
Illinois, a U.S.-based Crate and Barrel reports that its sofas have wood frames
“certified by the Sustainable Forestry Initiative” and that they are “guaran-
teed for life.” What'’s more, its cushions are “created with revolutionary, bio-
based materials that are environmentally renewable.” The advertisement
concludes: “Sustainability is a beautiful thing.”

The same can be said of products made of nickel-containing stainless steel.
It is one of the world’s most recycled materials. Austenitic stainless steel
products are all around us. Our kitchen appliances and sinks are made of it,
we cook our meals in it, we eat our meals with it, the material has been avail-
able for less than 100 years, and is increasingly recycled. More than 80% of
all products made of austenitic stainless steel are recycled at the end of their
useful life. That has significance for the environment and sustainability. It
means less energy is needed and less CO, emitted in the manufacture of
austenitic stainless steel than in the past, when virgin material was all that
was available. As more scrap becomes available, the need for virgin material
declines and the carbon footprint left by a ton of austenitic stainless steel
becomes smaller. The production of austenitic stainless steel is more sustain-
able than ever.

Fabricators and original equipment manufacturers (OEMs) must address
health, safety, and environmental concerns. Infusion processing technolo-
gies especially must maintain a safe workplace including periodic training,
adherence to detailed handling procedures, maintenance of current toxicity
information, use of protective equipment (gloves, aprons, dust-control sys-
tems, and respirators), and development of company monitoring policies.
Both suppliers and OEMs are working to reduce emissions of highly volatile
organic compounds (VOCs) by reformulating resins and prepregs (pre-im-
pregnated) and switching to water-dispensable cleaning agents.

So where does all this lead? Advances in materials technology and the
convergence of materials, information, and miniaturization will drive less
resource intensity, more complexity, and smart products. Older, established
technologies will continue sidewise development into new markets and
applications. Innovations such as nanotechnologies, portable energy sources,
multifuel products, miniaturization, and customizable intelligent materials
will grow.

But how do we cope with these challenges and the opportunities that
result?

We put the spotlight on innovation of new and exciting processing tech-
niques, methods, and fabrication technologies developing the next busi-
ness models, not only on new products, processes, and services within your
own company. Identify novel segments and geographies, quickly spot new
competitors and partners, and establish global positions quickly through
acquisitions, alliances, and licensing. In addition, we must manage strate-
gic risk—not just operational risk or political risk. Speed, flexibility, market
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knowledge, effective alliances and acquisitions, and innovation will be criti-
cal success factors required to win in an environment driven by these mega

trends.

In conclusion, we have before us opportunities and huge challenges.
They are coming at us simultaneously ... we have no option to take them in
sequence. We must play two hands.

Mel Schwartz
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Why Plasma Brazing?

In the last 20 years, the weight of vehicles has been steadily increasing. This
tendency can be applied to all makes and models of vehicles. The Volkswagen
Golf I automobile was made from 1974 until 1983 and weighed only 870 kg,
whereas the Golf 5 that started production in 2004 weighed about 1200 kg.
This increase in weight is largely due to two factors:

e The increase in components concerning the safety of the occu-
pants and the environment, for example, curtain and side airbags,
antilock braking systems, belt tensioners, catalytic converters, and
so on.

® The increase in components that increased driving comfort: electric
windows, electrically operated sunroofs, power steering, air condi-
tioning, and so on. For example, a maximum of five electric motors
and control units were installed in the Golf 3 (from November 1991
until May 1997), whereas the Golf 5 possesses 25-30 such units with
optimal equipment.

Parallel to this development, the construction of vehicles was changed so
that safety could be provided through stable passenger compartments and
consequently, the thickness of the body sheet metal was reduced. Most
body panels today are thinner than 1.0 mm. Galvanization provides cor-
rosion protection, which helps maintain the vehicle, its value, and enables
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the vehicle manufacturer, Volkswagen, to offer guarantees against rust
perforation.

Another development was the influence of joining techniques in body
construction. Previous welding procedures have caused spattering on gal-
vanized metal, and if the sheet metal is thin, there is a danger that it will be
burn-through. As a result, new or modified joining methods were needed
and required development.

Several brazing methods have been examined and developments have
produced several new techniques. Three of these methods appear to have
promise; however, the third method is the most applicable and is covered in
this chapter.

The first process that was examined was laser beam brazing, which is
suited for producing visually demanding and completely splatter-free
seams. Therefore, this process has been used for outer surface joints, the
boot lid (trunk) or hatch, and roof/side panel joints in autos. However, this
process depends on maintaining small gaps (g <1.0 mm), and can only be
used in automated applications and also requires safety measures specific
to laser beams.

The second method that was examined was MIG brazing (gas metal braz-
ing), a metal inert gas process in which a copper-containing filler metal was
used as a brazing material and is well suited for joining thin galvanized
sheet metal. This process or ability to fill gaps well is especially advanta-
geous when used with robots. However, this process is not splatter free and
consequently has limited use for outer body surfaces. The splatter must be
removed by grinding.

The third method and the subject of this chapter is plasma brazing,
which offers an excellent compromise between the previous two mod-
ern brazing methods. Plasma brazing is very well suited for joining thin
galvanized sheet metal, produces a narrow, visually appealing, and com-
pletely splatter-free seams and therefore has been used primarily on the
outer body surfaces of autos. Plasma brazing can be performed manually
as well as robotically and requires the same safety precautions as inert gas
shielded welding.

How Plasma Brazing Works

A schematic diagram of the plasma brazing torch is shown in Figure 1.1. A
plasma brazing machine consists of a plasma torch, a power source, a filler
material wire feed, gas feed and, if required, a seam guide sensor, Figure 1.2.
Plasma brazing is the equivalent of plasma welding with nonconducting
filler wire. Just as with other welding and brazing processes with a side-feed



