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FOREWORD

This IMA Volume in Mathematics and its Applications

PROBABILITY AND PARTIAL DIFFERENTIAL EQUATIONS
IN MODERN APPLIED MATHEMATICS

contains a selection of articles presented at 2003 IMA Summer Program
with the same title.

We would like to thank Jingiao Duan (Department of Applied Mathe-
matics, Illinois Institute of Technology) and Edward C. Waymire (Depart-
ment of Mathematics, Oregon State University) for their excellent work as
organizers of the two-week summer workshop and for editing the volume.

We also take this opportunity to thank the National Science Founda-
tion for their support of the IMA.

Series Editors
Douglas N. Arnold, Director of the IMA
Fadil Santosa, Deputy Director of the IMA



PREFACE

The IMA Summer Program on Probability and Partial Differential
Equations in Modern Applied Mathematics took place July 21-August 1,
2003, a fitting segue to the IMA annual program on Probability and Statis-
tics in Complex Systems: Genomics, Networks, and Financial Engineering
which was to begin September, 2003. In addition to the outstanding re-
sources and staff at IMA, the summer program was developed with the
assistance of the following members of the organizing committee: Rabi N.
Bhattacharya, Larry Chen, Jingiao Duan, Ronald B. Guenther, Peter E.
Kloeden, Salah Mohammed, Sri Namachchivaya, Mina Ossiander, Bjorn
Schmalfuss, Enrique Thomann, and Ed Waymire.

The program was devoted to the role of probabilistic methods in mod-
ern applied mathematics from perspectives of both a tool for analysis and
as a tool in modeling. Researchers involved in contemporary problems con-
cerning dispersion and flow, e.g. fluid flow, cash flow, genetic migration,
flow of internet data packets, etc., were selected as speakers and to lead
discussion groups. There is a growing recognition in the applied mathe-
matics research community that stochastic methods are playing an increas-
ingly prominent role in the formulation and analysis of diverse problems of
contemporary interest in the sciences and engineering. In organizing this
program an explicit effort was made to bring together researchers with a
common interest in the problems, but with diverse mathematical expertise
and perspective.

A probabilistic representation of solutions to partial differential equa-
tions that arise as deterministic models, e.g. variations on Black-Scholes
options equations, contaminant transport, reaction-diffusion, non-linear
equations of fluid flow, Schrodinger equation etc. allows one to exploit
the power of stochastic calculus and probabilistic limit theory in the anal-
ysis of deterministic problems, as well as to offer new perspectives on the
phenomena for modeling purposes. In addition such approaches can be
effective in sorting out multiple scale structure and in the development of
both non-Monte Carlo as well as Monte Carlo type numerical methods.

There is also a growing recognition of a role for the inclusion of stochas-
tic terms in the modeling of complex flows. The addition of such terms has
led to interesting new mathematical problems at the interface of probabil-
ity, dynamical systems, numerical analysis, and partial differential equa-
tions. During the last decade, significant progress has been made towards
building a comprehensive theory of random dynamical systems, statistical
cascades, stochastic flows, and stochastic pde’s. A few core problems in
the modeling, analysis and simulation of complex flows under uncertainty
are: Find appropriate ways to incorporate stochastic effects into models;
Analyze and express the impact of randomness on the evolution of complex

vii



viii PREFACE

systems in ways useful to the advancement of science and engineering; De-
sign efficient numerical algorithms to simulate random phenomena. There
is also a need for new ways in which to incorporate the impact of prob-
ability, statistics, pde’s and numerical analysis in the training of present
and future PhD students in the mathematical sciences. The engagement
of graduate students was an important feature of this summer program.
Stimulating poster sessions were also included as a significant part of the
program.

The editors thank the IMA leadership and staff, especially
Doug Arnold and Fadil Santosa, for their tremendous help in the orga-
nization of this workshop and in the subsequent editing of this volume.
The editors hope this volume will be useful to researchers and graduate
students who are interested in probabilistic methods, dynamical systems
approaches and numerical analysis for mathematical modeling in engineer-
ing and science.

Jingiao Duan
Department of Applied Mathematics
Illinois Institute of Technology

Edward C. Waymire
Department of Mathematics
Oregon State University
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NONNEGATIVE MARKOV CHAINS WITH APPLICATIONS*

K.B. ATHREYA?

Abstract. For a class of Markov chains that arise in ecology and economics
conditions are provided for the existence, uniqueness (and convergence to) of station-
ary probability distributions. Their Feller property and Harris irreducibility are also
explored.

Key words. Population models, stationary measures, random iteration, Harris
irreducibility, Feller property.

AMS(MOS) subject classifications. 60J05, 92D25, 60F05.

1. Introduction. The evolution of many populations in ecology and
that of some economies exhibit the following characteristics: a) It is random
but the stochastic transition mechanism displays a time stationary behav-
ior, b) for small population size (and in small and fledgling economies) the
growth rate is proportional to the current size with a random proportional-
ity constant, c¢) for large populations the above growth rate is curtailed by
competition for resources (diminishing return in economies). This leads to
considering the following class of stochastically recursive time series model

(1) Xn+1 = Cn+1Xn g(Xn) ) n>0

where g : [0,00) — [0,1] is continuous and decreasing, g(0) = 1, and
{Cr}n>1 areii.d. and independent of the initial value Xo.
These are called density dependent models (Vellekoop and Hognas (1997),
Hassel (1974)).

It is clear that {C), }n>0 defined by the above random iteration scheme
is a Markov chain with stated space S = [0, 00) and transition function

(2) P(z,A) = P(Czg(z) € A).

The goals of this paper are to describe some recent results on the
existence of nontrivial stationary distributions, convergence to them, their
uniqueness, etc.

2. Examples.

a) Random logistic maps. The logistic model has been quite popular
in the ecology literature to capture the density dependence as will as prey-
predator interaction (May (1976)). In the present context the parameter

*Supported in part by Grant AFOSR IISI F49620-01-1-0076. This paper is based on
the talk presented by the author at the IMA conference on Probability and P.D.E. in
July-August, 2003.

tSchool of Operations Research and Industrial Engineering, Cornell University,
Ithaca, NY 14853 (athreya@orie.cornell.edu); and Iowa State University.
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2 K.B. ATHREYA

C is allowed to vary in an ii.d. fashion over time. Thus the model (1)
becomes

(3) Xn+1 = Cn+1Xn(1 - Xn) ) n > 0

with X,, € [0,1], C,, € [0,4]. Thus, the state space S = [0,1] and g(z) =
1 — z has compact support.

b) Random Ricker maps. Ricker (1954) proposed the following model
for the evolution of fish population in Canada:

(4) Xpy1 = Cpny1 Xne 9%

with X, € [0,00), Cp € [0,00), 0 < d < oo. Thus, the state space
S = [0,00) and g(z) = e~ has exponential decay.

c¢) Random Hassel maps. Hassel (1974) proposed a model with a poly-
nomial decay for large values. Here

(5) Xn+1 = Cn+1Xn(1 + Xn)_d
with X, € [0,00), Cp, € [0,00), 0 < d < c0. Here S = [0,00), g(z) =
(1+z)<

d) Vellekoop-Hdognas maps. A model that includes all the previous
cases was proposed by Vellekoop and Hognas (1997)

(6) Xn+1 = Cn+1Xn(h(Xn)_b ) b>0

h : [0,00) — [1,00), h(0) = 1, h(-) is continuously differentiable and
h(z) = %%2 is nondecreasing.

This family of maps exhibits behavior similar to that of the logistic fmaily
such as pitchfork bifurcation of periodic behavior, chaotic behaivor as the
parameter value is increased etc.

The random logistic case was first introduced by R.N. Bhattacharya
and B.V. Rao (1993). Contributions to it include Bhattacharya and Ma-
jumdar (2004), Bhattacharya and Waymire (1999), Athreya and Dai (2000,
2002), Athreya and Schuh (2002), Dai (2002), Athreya (2003), Athreya
(2004a, b).

Deterministic interval maps have been studied a great deal in the dy-
namical systems literature. Random perturbations of such system have
been investigated in the book of Y. Kifer. Useful references for the deter-
ministic case are the books by Devaney (1989), de Melo and van Strien
(1993).

3. Random dynamical systems. The stochastic recursive time
series defined by (1) is an example of a random dynamical system ob-
tained by iteration of random jointly measurable maps. This set up will be
described now.

Let (S, s) and (K, k) be two measurable spaces and f : Kxs — S be jointly
measurable, i.e. (s x &, s) measurable. Let {6;(w)}:>1 be a sequence of K
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valued random variables on a probability space (2, B, P). Let Xo: Q@ — S
be an S-valued r.v. Let

(7) Xni1(w) = f(Ont1(w), Xn(w)),  n20.

Then for each n, X, : € — S is a random variable and hence
{Xn+1(w)}n>o is a well defined S-valued stochastic process on (2, B, P).
When {6;}:;>1 are i.i.d. r.v. independent of X, then {X,}n>0 is an S-
valued Markov chain on (2, B, P) with transition function

(8) P(z,A) = P{w: f(8(w),z) — A}.

It turns out that if S is a polish space then for every probability transition
kernel P(-,-), i.e., a map from S x s — [0,1] such that for each z, P(z,-)
is a probability measure on (S, s) and for each A in s, P(-,A): S — [0,1]
is s measurable, there exists a random dynamical system of i.i.d. random
maps {fi(z,w)}i>1 from S x Q@ — S that is jointly measurable for each ¢
and {f;(-,w)}i>1 are i.i.d. stochastic processes such that the Markov chain
generated by the recursive equation

(9) Xn1(w) = frnp1(Xn(w), w)
has transition function P(:,-), i.e.
P(z,A) = P{w: f(z,w) € A}.

See Kifer (1986) and Athreya and Stenflo (2000). As simple examples of
this consider the following.
1. The vacillating probabilist.

S =0,1],
Xn €n
Xn+1 = T + 2+1

{€n}n>1 are i.i.d. Bernouilli () r.v. Athreya (1996).
2. Sierpinski Gasket. Let S be an equilateral triangle with vertices
v1,vg,v3 and {Xp }n>0 be define by

Xn + €En+1

Xn+1 = 2

where {€,}n>1 are i.i.d. with distribution
1 .
P(q:Vi):g 1=1,2,3.

3. Let {An,bn}n>1 beiid r.v. such that for each n, A, is K x K real
matrix and b,, is a K x 1 vector. Let

Xn+1 = An+1Xn + bn+1-
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Suppose Elog||A1|] < 0 and E(log||b1]|)t < oo where ||A;]| is the ma-
trix norm and ||b;|| is the Euclidean norm. Then it can be shown that
X, converges in distribution and the limit 7 is nonatomic (provided the
distribution of (A, b;) is not degenerate). Note that this example includes
the previous two. Further, it can be shown that w.p.1 the limit point set of
{Xn}n>0 coincides with the support k of the limit distribution 7. This re-
sult has been used to solve the inverse problem of generating k& by running
an appropriate Markov chain {X,},>0 and looking at the limit point set
of its sample path. For this the book by Barnsley (1993) may be consulted.
When S is Polish and the {f;}:>1 are i.i.d. Lifschitz maps several suffi-
cient conditions are known for the existence of a stationary distribution,
its uniqueness and convergence to it. Two are given below.

THEOREM 3.1. Let (S,d) be Polish and (Q, B, P) be a probability
space. Let {fi(z,w}i>1 be i.i.d. maps form S x Q — S such that for each i
fi is jointly measurable. Let Xpy1(w) = frnt1(Xn(w),w), n >0
a) Let fi(-,w) be Lifschitz w.p.1 and let

sup d(fi(z,w), fi(y,w)
BEY d(z,y)

s(f1)

Assume E(log s(f1)) < 0 and E(logd(fi(zo,w),z0))" < oo for some o
n S.

Then, for any initial distribution, the sequence {X,} converges in
distribution to a limit w that is unique and stationary for the Markov
chain {X,}.

b) Let for somep >0

sup E(d(fl(sz)’ fl(yaw)))p <

s d(z,v) !

and for some xo
E(logd(f1(z0,w), z0))* < 00

Then the conclusion of (a) holds.
For a proof of (a) see Diaconis & Freedman (1991). For a proof of
(b) see Athreya (2004b). The main tool is to show that the dual sequence
Xn = fi(fz...(fa("))) converges w.p.1 and that X,, and X, have the same
distribution. For related results see N. Carlson (2004) and Wu (2002).
For Feller Markov chains on Polish spaces one of the methods of finding
stationary distributions is to use the weak compactness of the occupation
measures and the Foster-Lyaponov criterion.
More specifically, define the occupation measures by

n—1

(10) Ty o (A) = % S Pjed), n>1
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THEOREM 3.2. Let T be a vague limit point of {T'pnz(-)}, that is,
T is a measure such that I'(S) < 1 and for some subsequence ny — oo,
fsngn,I — [gdl' for all continuous functions g with compact sup-
port. Suppose S admits an “approrimate identity” i.e. I{gk}r>1 Such
that for each k, gr is a continuous function with compact support and
for all z in S, 0 < gk(z) T 1. Then, T' is stationary for P, i.e.
I'(A) = [4 P(z,A)T(dx), VA€ s.

The Foster-Lyaponov condition ensures that any vague limit I" is non-
trivial.

THEOREM 3.3. Suppose there erists a function V : S — [0,00), a set
K C S and constants a > 0, M < oo such that

i) Ve gk, EV(X)|Xo=2z)-V(z)< —o.

it) Ve e S, EV (X)) |Xo=2)-V(z) <M.
Then im Ty oo(k) > 3757 > 0.
In ecological and economic applications when S = [0, c0), the above condi-
tion is verified for a compact set k£ C (0,00) so that I' is different from the
delta measure at 0.

For proofs the above two results see Athreya (2004a, b).

4. Stationary distributions for Markov chains satisfying (1).
Let {X,}n>0 be a Markov chain defined by (1). A necessary condition
for the existence of a stationary distribution 7 such that 7(0,00) > 0 is
provided below.

THEOREM 4.1. Let E(lnc;)™ < co. Suppose there exists a probability
distribution m on [0,00) that is stationary for {Xn}n>o0 and 7(0,00) > 0.
Then,

i) E(lnc;)” < oo,

i) [|Ing(z)|n(dr) < oo,

#i) Elncy = — [Ing(z) m(dz) and hence strictly positive.

COROLLARY 4.1. If Elnc; < 0 then m = dg, the delta measure at 0 is
the only stationary distribution for {Xn}n>o0. Further, X, converges to 0
w.p.1 if Elncy < 0 and in probability if Elnc; = 0.

A sufficient condition is given below.

THEOREM 4.2. Let D =supz g(z) < co. Let

i) E|InC| < oo, ElnC; >0,

1) E|lng(Cy, D)| < oo.

Then, there erists a stationary distribution © for {X,} such that
w(0,00) = 1.

For the logistic case this reduces to EInC; > 0 and E|ln(4 — C1)| < o0
and for the Ricker case to EInC; > 0 and EC; < oo.

For proofs of these and more results see Athreya (2004). The station-
ary distribution is not unique, in general. For an example in the logistic
case see Athreya and Dai (2002). Under some smoothness hypothesis on
the distribution of ¢; uniqueness does hold as will be shown in the next
section. For some convergence results see Athreya (2004a,b).
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5. Harris irreducibility.

DEFINITION 5.1. A Markov chain {X,,}n>0 with state space (S, s) and
transition function P(-,-) is Harris irreducible with reference measure ¢ on
(S,s) if

i) @ in o-finite and

i) p(A) >0 = P(X, € A for some n>1 Xo=2) is >0

for every x in S.
(Equivalently if there exists a o-finite measure ¢ on (S,s) such that for
each = in S, the Green’s measure G(z,A) = > - P(X, € A| Xo = x)
dominates ¢.)

If S = N, the set of natural numbers and P = ((ps;;)) is a transition
probability matrix and if V4,5 dn;; € P > 0 then {X,} is Harris ir-
reducible with the counting measure on N as the reference measure. An
important consequence of Harris irreducibility is the following

THEOREM 5.1. Let {Xn}n>0 be Harris irreducible with state space
(S, s), transition function P(-,-) and reference measure . Suppose there
exists a probability measure ™ on (S, s) that is stationary for P. Then

i) ™ is unique.

i) For any =z in S, the occupation measures I', .(A)

%23_1 P(z; € A| Xo = x) converge to n(-) in total variation.

1) For any xz in S, the empirical distribution L,(A) =

L5 "Ta(z;) — m(A) w.p.1 (P;) (when Xo = x) for each A
ins.

w) {Xn}tn>o is Harris recurrent i.e. ¢(A) > 0 = P(X,) € A for

somen>1| Xo=z)=1 forallz in S.

The Markov chain vacillating probabilist (Example 3.1) is not Har-
ris irreducible but will be if €; has a distribution that has an absolutely
continuous compnent.

It is also known that if s is countably generated then every Harris
recurrent Markov chain with state space (S, s) is regenerative in the sense
its sample paths could be broken up into a sequence of i.i.d. cycles as in the
discrete state space case. For a proof of this and Theorem 5.1 see Athreya
and Ney (1978), Nummelin (1984), Meyn and Tweedie (1993).

In the rest of this section conditions will be found for Harris irreducibil-
ity of {X,}n>0 defined by (1).

Assume that {C,},>1 are i.i.d. with values in (0, L), L < oo and for
each c € (0,L), fo(z) = czxg(z) maps S = (0,k), k < oo to itself. For any
function f : S — S the iterates of f are defined by

fO) =z, (@)= f(f™(2), m=>0.

The first step is a local irreducibility result.

THEOREM 5.2. Suppose

i) 30 < a < oo, 6§ >0, a Borel function¥: J=(a—0d,a+d)—
(0,00) = P(C1 € B) > [5,¥(8)db for all Borel sets B.
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i) 30 < p < 00, m > 1 such that for the function fu(z) = az g(z),

(p) = p.

Then, 3n >0 -V eI = (p—n,p+n), P(X,, € A) > 0 for all Borel
sets A such that o(A) = A(ANTI) > 0 where X is Lebesgne measure.

COROLLARY 5.1. Suppose in addition to the hypotheses of Theorem
5.1, P(X,, € I for some n>1)is >0 for all z in (0,k). Then {X,}n>0
is Harris irreducible with state space S = (0, k).

Using a deep result of Guckenheimer (1979) on S-unimodal maps a
sufficient condition for the hypotheses of Corollary 5.1 can be found.

DEFINITION 5.2. A map h: [0,1] — [0,1] is S-unimodal if

i) h(-) € C3, i.e. 3 times continuously differentiable,

it) h(0) = h(1) =0,

i) 30 <c<13h"(c) <0, h is increasing in (0,c) and decreasing

in (¢, 1) and

i v 2
iv) (Sf)(z) =4 — g(*,g,g;;) if W(z) >0 and —oo if h(z)=0
is <0 forall 0<z<1.

EXAMPLES. h(z) ==cz(l —z), 0<c<4, h(z)=z’sinnz.

DEFINITION 5.3. A number p in (0,1) is a stable periodic point for h
if for some m > 1, h™(p) = p and |h(™ (p)| < 1.

DEFINITION 5.4. For x in (0,1) the orbit O, is the set {h(™)(z)},>0
and w(x) is the limit point set of O,.

THEOREM 5.3 (Guckenheimer (1979)). Let h be S-unimodal with a
stable periodic point p. Let K = {z : 0 <z <1, w(z) = w(p)}. Then,
A(K) =1 where A(-) is the Lebesgue measure.

Combining Theorem 5.2, 5.3 and Corollary 5.1 leads to

THEOREM 5.4. Let S = [0,1]. Assume

i) VO<c<k, h(z)=cxg(x) is S-unimodal.

i) 30 <p<1l, 0<a< L > pisa stable periodic point for

ho(z) = azg(z).

i) 3 6 > 0, a Borel function ¥ : J = (a — §,a +6) — (0,00) >

P(Cy € B) > [5.,,%(0)db for all Borel sets B. Then, the Markov
chain {Xp}n>o0 defined by

Xn+1 :Cn+1Xng(Xn), n=0,1,2,...

where {Cp}n>1 are i.i.d. is Harris irreducible with state space (0,1)
reference measure ¢(-) = A(-NI) where I = (p—mn,p+mn) for some
appropriate n > 0.
As a special case applied to random logistic maps one gets
THEOREM 5.5. Let S =(0,1], let {Cr}n>1 .2.d. [0,4] valued r.v. and
{Xn}n>o0 be the the Markov chain defined by

Xnt1 = Cry1 Xn(1 = Xp), n > 0.

Suppose 3 an open interval J C (0,4) and a function ¥ : J — (0,00) —
P(Cy € B) > [5.,,Y(0)db for all Borel sets B.



