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Preface

Recent developments in numerical computations are amazing. A lot of huge projects in
applied and theoretical sciences are becoming successful by them, while similar things are
happening even in the level of personal computers. Under such a situation, theoretical
studies on numerical schemes are fruitful and highly needed.

The purpose of the present book is to provide some of them, particularly for schemes to
solve partial differential equations. In 1991, we published an article on the finite element
method applied to evolutionary problems from Elsevier Publishers (Fujita and Suzuki
[148]). This book follows basically that way of description. We study various schemes
from the operator theoretical point of view. Many parts are devoted to the finite element
method, of which history is described in Oden [306]. We deal with elliptic and then time
dependent problems in use of the semigroup theory and so forth. Some other schemes
and problems are also discussed, with the later development taken also into account. We
are led to believe that any scheme used practically has significant and tight structures
mathematically and the converse is also true.

Besides some corrections and supplementary descriptions, we have added the following
topics: (1) LP estimate of the Ritz operator associated with the finite element approxi-
mation (2) asymptotic expansions and Richardson’s extrapolation for the finite element
solution (3) Trotter-Lee’s product formula for holomorphic semigroups (4) mixed finite
element method (5) Nehari’s iterative method for non-stable solutions of elliptic problems
(6) finite element approximation of nonlinear semigroups and applications (7) boundary
element method for elliptic problems (8) charge simulation method for elliptic problems
(9) domain decomposition method for elliptic problems.

To make the description consistent, the domain in consideration is mostly supposed to
be a convex polygon, and piecewise linear trial functions are adopted unless otherwise
stated. The other cases are described in the notes at the end of chapters.

The authors thank Professors M. Katsurada, A. Mizutani, H. Okamoto, and T. Tsuchiya
for reminding us of some recent developments in the theoretical study and actual compu-
tations. Thanks are also due to Ms Y. Ueoka for typesetting the manuscript carefully.

Tokyo/Toyama/Osaka
April 2001

Hiroshi FuJirta
Norikazu SAITO
Takashi SUZUKI
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Chapter 1

Elliptic Boundary Value Problems and FEM

The present chapter is concerned with the finite element method (FEM) ap-
plied to elliptic boundary value problems. For this topic, we have several
monographs such as Strang and Fix [359], Ciarlet [83], Raviart and Thomas
[326], Johnson [193], Ciarlet and Lions [85], Szabé and Babusuka [372], and
Brenner and Scott [60]. Here, we describe it in the framework of operator
theory, picking up approximate operators of the schemes. This way is natural
and efficient, particularly in dealing with time dependent problems, because
the finite element method is regarded as a discretization of the underlying
variational structure.

1.1 Elliptic Boundary Value Problems
To fix the idea, let © C R? be a convex polygon, and consider the Poisson equation
—Au=f in € ‘ (1.1)
with Dirichlet condition
u=10 on 9. (1.2)
This boundary value problem has the weak form, described under the following notations.
1° LP(Q) denotes the set of p-integrable functions for p € [1,00) and that of essentially
bounded functions for p = oco. Unless otherwise stated we assume functions to be

real-valued and Banach spaces real.

2° W™P(Q) denotes the Sobolev space, the set of measurable functions with their dis-
tributional derivatives up to m-th order belonging to LP(}), where m =0,1.2,---.

3° C3°(92) denotes the set of infinitely many times differentiable functions having com-
pact supports contained in €.

4° W"P(Q2) denotes the closure of C§°(Q) in W™r(Q).

52 H™(§) and HP*() stand for W™2(Q) and Wg™*(Q2), respectively. We set |v]
|'“|mn = Z|n|=m “DGU”LZ(Q)'

m



2 1. Elliptic Boundary Value Problems and FEM

6° (, ) and A(, ) denote the L? inner product and the Dirichlet form, respectively:
(f.9) = [ f@)(o) do.
Q

Alu,v) = /nVu(.r) - Vo(z) dz.

7° The trace operator is denoted by
Y= ot HY(Q) — H'(09).
It holds that Ker(y) = Hg(Q).

Then, (1.1) with (1.2) is reduced to the problem in V = H}(Q): find u € V satisfying

A, v) = (f,v) (1.3)

for any v € V. Supposing that u is smooth, we have by Green’s formula that
Au,v) = / Vu- Vv dr = - / (Au)v dz = (f,v),
Q Q

since v € H}(Q). Equality (1.1) follows from arbitrariness of v.

Henceforth, various generic constants are denoted indifferently by C. If it depends on
some parameters, say a, 3, -, we may write it as Cp g.....

Poincaré’s inequality is indicated as

“U“LZ(Q) < Ca HV'”“L?(Q) (veV) (1.4)

so that A(, ) provides an inner product to the Hilbert space V = H}(Q2). Let V' be the
dual space of V. Then, regarding f € L?(Q2) as an element of V' through

(fio)yy = (fiv)

for v € V, we can verify the unique solvability of (1.3) from Riesz’ representation theorem.
Because 0 is convex, regularity of the weak solution follows; u € V belongs to H?(Q) if
f € L?*(R). Therefore, the above calculation is justified and u becomes a strong solution.

We proceed to the case of V = H'(Q) in (1.3). Assuming that u is smooth, we obtain
similarly that

Alu,v) = / Vu-Vu dr = ﬁw dS — /(Au)ﬂ dz = (f,v).
Q Q

on On

Here, 3/9n denotes the differentiation along the outer unit normal vector n = (n;, n2) on
9 and dS denotes the surface element of 9. Taking v € H}(Q), we have

/ ,ai'u dS=0
Jon (Dn
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so that equality (1.1) follows from arbitrariness of v € H§(€2). This implies

/ —UdS—O
a0

du
on

for any v € H'(Q) and hence

=0 on 0N

follows.
In other words, Neumann problem

—Au = f in
O 0 on 0N

on
is reduced to variational problem (1.3) for V = HY(Q).

Since Poincaré’s inequality (1.4) dose not hold for V = H'(Q), this time A(

, ) does

not provide an inner product to H!(€2). Actually, problem (1.5) with (1.6) is not uniquely

solvable. For instance, any constant function u = ¢ € R satisfies (1.5) with (1.6) for f = 0.
Above considerations are generalized in the following way. Let a;;(z) = a:(x), b;(z)

and c(z) be real-valued smooth functions on £ and suppose that the uniform ellipticity

Z az] §z§] 2 61 |£|

1,7=1

holds for £ = (£,&) € R? and x € Q with a constant §; > 0. Given
2 2 ,
fe0)=-3 o) + > bj(m)a,% +o(a),
we take the boundary value problem
L(z,Du = f in €
u = 0 on JN.
Then it is reduced to problem (1.3), where V = H} () and

2

; 2
(u,v) /{Z adu 5:1 Zb U+c( )uu} dz.

Similarly, if a smooth function o(£) on 9 is given and

2

0 0
% = Z nli(.l:)aij(lj)a'__ljj

ij=1

(1.7)
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denotes the outer co-normal differentiation associated with £, boundary value problem
(1.8) with

%ﬁ +ou=20 on JN (1.10)

is reduced to variational problem (1.3) with V = H'(Q) and

2
()u ov
A(u.v)=/n{ij21 )z, Br; Zb o+ e }dr
+/ ou-v dS (1.11)
filo)
for u,v € V.
Those bilinear forms are bounded in the sense that

A, 0) < Clully loll,  (wove V). (112)

Given € > 0, the trace operator vy = -|,, admits a constant C, > 0 satisfying
”'Y'””m(an) <e ”vHH‘(Q) + C. ”””Lﬂ(n) (1.13)

for any v € H'(Q). Therefore, for § € (0,46;) and A € R, it holds that
Alw,v) > 8l = Aol (weV) (1.14)

by (1.7). Here and henceforth, we set X = L2(2).
In the case that

bj(z) =0, c(z) >0, and V = H)(),
or
bj(z) =0, c(z) > 0, o(&) >0, and V = HY(Q),

we can take A = 0 in (1.14). Then, problem (1.3) is uniquely solvable by Lax-Milgram'’s
theorem.

In use of the dual space V' of V, boundedness (1.12) of A( , ) implies the well-
definedness of the bounded linear operator A : V — V' through the relation

A(u,v) = (Au, v)y

for u,v € V. On the other hand, identifying X’ with X by Riesz’ representation theorem
provides a triple of Hilbert spaces V C X C V’ with continuous and dense inclusions. Let

D(A)={ueV| Aue X}.

We shall write the restriction of A : V — V’ to D(A) by the same symbol A. It is regarded
as an operator in X, and (1.3) is written as an abstract equation in X if f € X = L?(Q):

Au=f
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The elliptic regularity is expressed as
D(A) = H¥(Q) N H(Q)

for boundary condition (1.9) and
2 v
D(A)=<ve H*(Q)| =— +ou=0 on o0 (1.15)
()TI.C

for boundary condition (1.10). Those relations hold if 9Q is sufficiently smooth for in-
stance. We get a strong solution u € H*(2) of (1.8) with (1.9) or (1.10), whenever X = 0
holds in (1.14).

The operator A in X arising in such a way from the bilinear form A(, Jon V x V
is called m-sectorial. To describe the meaning of this terminology, let us suppose A = 0
in (1.14) for simplicity, and specify the constant C in (1.12) as C;. We can take natural
complex extensions of the Banach space X and the operator A. This means that the
functions in X are extended to be complex-valued with the inner product

(f.9)= Lf(l)m dr

and Af = Af) +1Af, if f = fi +f, with f; and f, being real-valued, where » = /—1.
Denote them by the same symbols X and A. Then, inequality (1.12) keeps to hold, while
(1.14) is replaced by

Re A(v,v) 2 §|v]l},  (weV).
A sector is given as
Yp={z€C| 0< |arg 2| <6},

where 6 € (0,7/2). If cos = §/C), an elementary calculation gives that the numerical
range v(A) of A is included in Ly, where

v(A) = {Aw,u) | veV, |ully=1}.

A fundamental property of the numerical range says o(A) C v(.A). The relation v(A) C
¥y implies that C\ £y C p(A), where o(A) and p(A) denotes the spectrum and the
resolvent set of A, respectively. More precisely, if we take 6; € (6,7/2) and z € C in
6, < |arg z| <, then we have

» 1
1T =" x < o —a o (1.16)

In particular, —A generates a holomorphic semigroup {e~*4} _ in X, of which details
are discussed in the next chapter.

Inequality (1.16) is proven in the following way. Let

t>0

d(z) = dist (2,0%) =inf {|z —¢|]| ¢ € Lp}.
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Then, because z € ¥4, we have
d(z) > |z|sin (6, — 0) (L.17)

and also

(Au,u)

W > dist (z,v(A)) > dist (2,%p) = d(z2).

This implies
(=] = A)u,u)| > d(2)||u])?,
or
(=1 = Ayull > d(z)]lu (1.18)

for w € D(A). In particular, Ker (2 — A*) = Ker (2I — A) = {0} follows and hence
Ran (2 — A) = X holds by the closed range theorem. Inequality (1.16) now follows from
(1.18) and (1.17).

The following notation is commonly used in the operator theory: A densely defined
closed linear operator A with the domain and the range in a Banach space X is said to

be of type (6, M) for 8 € (0,7) and M > 1, if C\ £y C p(A),

M

2l — A)7!
It -l <

for z < 0, and
M,
Ad-A)7 <=
1 - )7 < 2

for 6 + ¢ < |arg z| < m with € > 0, where M, is a positive constant. In use of this
terminology, we can say that any m-sectorial operator is of type (6, M) for some 0 €
(0,7/2).
The adjoint form A* of A is defined by
A*(u,v) = A(v,u) (u,v € V).
If A= A* we say that it is symmetric. In this case it holds that D(AY2) = V and

872 ol < |4V, < &2 ol (1.19)

where A'/? is the square root of A defined through its spectral decomposition.
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1.2 Ritz-Galerkin Method

Considerations of the previous section are summarized as follows. Let V € X C V' be
a triple of real Hilbert spaces, with the first inclusion continuous and dense so that the
second inclusion follows from identifying X’ with X by Riesz’ representation theorem.
Let A(, ) be a bilinear form on V' x V and assume that it is bounded:

A, < Cllully oy, (woe V) (1.20)
and is strongly coercive, which means that (1.14) hold for A = 0:
A(w,v) > 8 ||vll% (veV). (1.21)

Given f € V', the problem in consideration is formulated in an abstract manner so as to
find u € V satisfying

Al ) = (£, 0y y (1.22)

for any v € V. Then it is uniquely solvable by Lax-Milgram’s theorem.

Ritz-Galerkin method approximates (1.22) in the following way: Prepare a family of
finite dimensional subspaces {Vi},., of V approximating the latter as & | 0. Then, we
take the problem to find wu;, € V, satisfying

A(uh: X/l) — (fu Xh)V’,V (123)

for any x, € V,.

Unique solvability of (1.23) follows from the same reasoning as for (1.22). Let X}, be the
space V), equipped with the topology induced from X, and P, : X — X the orthogonal
projection. The linear operator A, : X, — X}, is defined through

Alun, xn) = (Antin, Xn)
for up, xn € Xp. If f € X, problem (1.23) is equivalent to the equation
Apuy = P f

in the finite dimensional space X,.
Stability and error estimate of the approximate solution are verified as follows. Let
Ry .V — V), be Ritz operator defined through

A(R;Lu, th) = ‘A('“’v Xh)

for x, € Vj and u € V. Its well-definedness follows from Lax-Milgram’s theorem similarly
to the unique solvability of (1.23). If w € V is the solution of (1.22), then the approximate
solution uy, of (1.23) is nothing but Rju. This gives the relation

RyA™' = A;'P,. (1.24)
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If A(, ) is symmetric, the operator R, : V — V} is nothing but the orthogonal
projection with respect to the inner product A( , ). Therefore, we have

A(Rpu, Rpu) < A(u,u)
and
A(Rpu — u, Rpu — u) < A(xn — Uy Xp — 1)

for any x;, € V},. Then boundedness (1.20) and strong coerciveness (1.21) of A( , ) imply
the stability

1Ruully < C flull, (1.25)
and the error estimate

Ry —ully, < C inf |[xn—ully, - (1.26)
XhEVh

Those relations hold even in the general case of A* # A. In fact, from (1.21) and (1.22)
we have

1) ||R,,u,||f, < A(Rpu, Ryu) = A(u, Rpu) < C || Ryul|y - ||ully,
and

0| Rpu — 'u,||‘2/ A(Rpu — u, Ry — u) = A(Rpu — uy xn — )

<
< CllRwu—ully - lxa = ully

for any x;, € V,,. Hence (1.25) and (1.26) follow in turn.

Operator theoretical features of A; in X}, are rather similar to those of the continuous
version, A in X. If the complex extensions are taken as in the continuous case, Ay, in X,
is m-sectorial of type (6, M) for some 6 € (0,7/2) and M > 1 independent of A.

If X = L%(Q) and V = H}(Q) or V = H(Q), and A(, ) is associated with the elliptic
boundary value problem described in §1.1, this uniform structure of o (4,) is refined in
the following way.

Theorem 1.1. The spectrum o(Ay) of Ay is contained in a parabolic region in the com-
plex plane independent of h > 0. Consequently, each 6 € (0,7/2) admits constants C > 0
and M > 1 independent of h, with A, — C of type (6, M) in Xp.

Proof:  Split A(, ) as
A(u,v) = A(u, v) + (Bu,v), (1.27)

where

2

du v
Ou, v) = (1) — — d: uv d
A’(u,v) E /Qaz](.r)azj o d.r+/mau( ds

i,7=1
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and
2 ou
Bu = ; bJ(I)a—IJ + C(.’L’)u.

Here, A° is a strongly coercive symmetric form on V x V', and B is regarded as a bounded
operator B: V — X. Let A be the self-adjoint operator in X, associated with A%y, .
The inequality

_ 1
) l“)‘h-xh < [Im z|

|(z1n — A, (1.28)

is a consequence of a property of self-adjoint operators, where z € C \ R and I, denotes
the identity operator on Xj. This implies

IA

o o],

-1
xallx + l21 - | (220 = 45) ™ x

2| 22|
1 _— . < — 20
( + |I Zl ”Xl ”X = |I Zl ”Xh“x

X

IA

for x, € X;. Heinz’ inequality now gives that

L1/2
< V217

H(Ag)]/z (zIn = AO")_lnx,,.x,, = |Imz| °
On the other hand, the relation
A, = A) + By,
holds with B, = Ph‘B|VI| so that By, : V, — X}, is uniformly bounded:
1Brlly, x, < Ca

where Cy > 0 is a constant.
We have

A° 1/2 2 A0 _ 470 >§ 2
( h) Xh ¥ - ( hXhs Xh) A (X/‘u Xll) = “Xh.“v

for x5, € X,. This implies

< Cy=46"12
Vi X

e

similarly to (1.19). Given x, € X}, we have

Izt = A0 Buall, < G| (45)"* (21— A43) ™ Bua|
VICCET o ML
- |Im z| Xnlly = |Im 2| Xelly -



