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Preface

These two volumes on surface-initiated polymerization deal with recent devel-
opments in the synthesis, characterization and properties of structurally and
chemically defined polymer coatings on surfaces. Nearly all polymerization
techniques that have been developed in solution have now been adapted for
the surface-initiated polymerization (SIP). The reader will find all relevant
techniques discussed in these volumes, such as free, controlled and living radi-
cal polymerization, living anionic and cationic polymerization (Rigoberto Ad-
vincula), and ring-opening metathesis polymerization (Michael Buchmeiser).
Most of them are used to prepare so-called polymer brushes, a term describing
strictly linear polymers that are densely grafted via one end to an interface.
Such coatings display unique physical properties useful for a variety of ap-
plications. In particular, the high structural control of polymer brushes that
can be realized by controlled or living polymerization techniques draws much
attention. The contribution by Takeshi Fukuda et al. on high-density polymer
brushes outlines the synthetic possibilities as well as the unique properties
of polymer brushes. Such coatings will surely play an important role in in-
novative surface science and nanotechnology. The present contributions also
reflect an ongoing trend: the development of defined heterogeneities on nearly
any length scale. This can be realized by structured polymer coatings, gradi-
ents and control of the topography via the SIP reaction conditions. Jan Genzer’s
contribution on the preparation of polymer brush gradients is a good example.
As it relates to defined structural variation and control of the macromolecular
design of grafting polymers via SIP, I would like to point the reader to the
contributions by Takehisa Matsuda on surface graft microachitectures or by
David Bergbreiter discussing the synthesis and applications of hyperbranched
polymers on surfaces.

Originally, the reviews were to be divided into, e.g., a Synthesis, Properties
and Application section. Fortunately, this was not possible at all. Synthesizing
a polymer coating by SIP is performing materials science from scratch. Intro-
ducing a slightly different monomer or changing the solvent will automatically
alter the properties of the surface such as its wetting behavior, topography,
elasticity, homogeneity, etc. It is exciting (and difficult!) to characterize the
layers and find out why an altered reaction condition had such an impact upon
the various layer properties. Thus, the researcher is immediately involved in
various aspects of surface science and analytical challenges. This is reflected in
all contributions. For example, Daniel Dyer discusses the fundamental and in-
teresting aspect of the photoinitiated synthesis of polymer brushes. Of course,
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the enormous advances in surface-sensitive characterization techniques de-
veloped for the investigation of self-assembled monolayers have provided the
proper tools. However, as polymers are flexible, the investigation of the dy-
namic behavior of polymer coatings adds another dimension. The contribution
by William Brittain on stimuli-responsive films gives an idea of the complex
behavior of polymer brushes.

Besides the analytical techniques, the theoretical description of polymer
brushes allows a deeper understanding of the complex dynamic behavior of
polymers on surfaces and is useful for future developments. Here, Roland Netz
gives — also for the non-expert — a very helpful theoretical background on
the theoretical approaches for the description of neutral and charged polymer
brushes.

The interest in polymer brushes and defined polymer coatings prepared via
SIP is not at all restricted to the polymer community or the surface science
community. The demand for tailored, functionalized and adaptive surfaces
comes from a multitude of scientific branches and also from industry. Possible
applications are already discussed in many of the contributions compiled here.
Besides polymer science, surface chemistry and physics, they include cataly-
sis, biomedical applications, microfluidics and nanotechnology. This creates
a highly interdisciplinary, lively and fruitful environment.

Finally, I would like to thank all authors for their time and effort to make
a state-of-the-art overview of surface-initiated polymerization possible. An
edited book is only as good as its contributions and I had the privilege to
compile contributions of the highest quality.

I .am also grateful to Ms. Ulrike Kreusel and Dr. Marion Hertel from Springer
for their professional help and patience.

Munich, January 2006 Rainer Jordan
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Abstract This review summarizes the synthesis of irregular hyperbranched polymer
grafts on various inorganic and organic substrates. The synthesis of these hyperbranched
grafts are generally based on “graft on a graft” polymerizations and include diverse sorts
of graft polymers. The “graft-on-a-graft” strategies discussed here include chemistry
leading to the synthesis of hyperbranched poly(acrylic acid) grafts, polysiloxane grafts,
dendrimer/polyanhydride graft nanocomposites, ring-opening polymerization grafts,
and polyamidoamine grafts. Other relevant chemistry of these grafts including chemistry
leading to derivatives of hyperbranched poly(acrylic acid) grafts, further modification by
polyionic interactions, polyvalent hydrogen bonding, and functional group manipulation
is discussed. Examples of reactions of monomers with polyvalent surfaces that lead to
hyperbranched grafts are also briefly discussed.
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Keywords Dendrimer - Hyperbranched grafts - Nanocomposite - Polyvalency -
Surface modification

Abbreviations

PAA poly(acrylic acid)

PTBA poly(tert-buyl acrylate)

MUA mercaptoundecanoic acid

FTIR-ERS Fourier Transform Infrared external reflection spectroscopy
XPS X-ray photoelectron spectroscopy

PE polyethylene

PP polypropylene

ATR-IR  attenuated total reflectance infrared
PNIPAM poly(N-isopropylacrylamide)

TEA 2-thiopheneethyleneamine

ROP ring opening polymerization

APES 3-aminopropyltriethoxysilane

1
Introduction

There is great interest in designing functional interfaces. Hyperbranched
grafts are alternatives to existing “linear” grafts for formation of such inter-
faces. They are of interest because they can provide interfaces with different
sorts of properties. Hyperbranched grafting is also conceptually more attrac-
tive than other approaches because the multiple grafting of oligomeric graft-
ing reagents can compensate for inefficiencies in reactions at surfaces (Fig. 1).
If, for example, an initial surface graft has coverage defects or if defects are
introduced during the graft-on-a-graft synthesis due to incomplete reactions,
subsequent hyperbranched grafting stages can “heal” these defects more ef-
ficiently than the traditional monomer grafting strategies that produce linear
graft chains (Fig. 1b versus 1a). This same effect was noted previously by Fer-
guson in layer-by-layer grafting of mica particles and polycationic polymers
on hydrophobic surfaces like octadecyltrichlorosilane treated Si/SiO, wafers
and hexadecanethiol-modified silver films and is a general feature common
to other layer-by-layer grafting chemistry [1,2]. As shown in Fig. 1, the ad-
vantages of hyperbranching are considerable. In the particular schematic
drawing of three graft stages shown in Fig. 1b, hyperbranched grafting is far
more effective than linear grafting through three stages in Fig. 1a even when
there is a relatively low (50%) efficiency in the first step of grafting.

The synthetic strategies that lead to irregularly hyperbranched grafts
based on surface confined “graft-on-a-graft” polymerization reactions are
the focus of this review. Limited examples of monomers reacting with poly-
valent surface-bound reagents leading to hyperbranched polymers are also
discussed. In general, the chemistry described here is confined to reactions
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Fig.1 A schematic drawing comparing linear grafting a with hyperbranched grafting
b in coverage or “healing” of surface defects. An efficiency of 100% is assumed in all three
steps in linear grafting (a). In the hyperbranched graft example (b), a 50% efficiency is as-
sumed in the first step but 100% efficiency and three branches per graft stage are assumes
in steps two and three

that involve condensation polymerization reactions or reactions that involve
the reaction of an electrophile with a nucleophile. This review begins with
hyperbranched grafting of poly(acrylic acid) on hard inorganic or metal sur-
faces and soft polymer surfaces. Methods for derivatizing these films either
by covalent modification or with polyvalent noncovalent interactions are dis-
cussed. Limited examples of applications of these materials are described.
For example, Crooks’ group has used some of these synthetic methods to
prepare patterned surfaces. In cases like this where this subject has been
reviewed, it is only briefly discussed here. Other hyperbranched grafting
strategies including multilayer grafting of polyvalent nucleophiles and elec-
trophiles, grafting via ring opening polymerizations, and the synthesis of
dendritic grafts using polyvalent surface-bound reagents and monomers are
discussed subsequently. There are other very successful synthetic strategies
for preparing hyperbranched films based on free radical polymerizations
that will not be a topic of discussion in this review. For example, Miiller
has developed a novel method of hyperbranched graft polymerization of in-
imers (initiator-monomers) by self-condensed vinyl polymerization (SCVP)
via atom transfer polymerization (ATRP) [3, 4]. Another example would be
Matsuda’s preparation of hyperbranched grafts by iniferter (initiator-transfer
agent-terminator) polymerization [5,6]. A detailed description of these in-
iferter polymerizations can be found in Matsuda’s contribution in this vol-
ume. A similar approach by Tsubokawa is described as a post-graft poly-
merization of vinyl monomers and is useful as a route to hyperbranched
grafts [7-9]. Surfaces with hyperbranched grafts can also be prepared by
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grafting commercially available hyperbranched polymers to surfaces. For ex-
ample, Tsukruk has studied grafted hyperbranched polyesters with terminal
epoxides that are attached to Si — OH surfaces [10, 11]. There are many exam-
ples where dendrimers are attached to surfaces by covalent or non-covalent
interactions [12-17]. This chemistry too is not discussed here unless the den-
drimers are used as reagents with linear polymers or oligomers to prepare
hyperbranched grafts.

2
Hyperbranched Poly(acrylic Acid) Grafts

The synthesis of hyperbranched grafts of poly(acrylic acid) (PAA) using
a “graft-on-a-graft” strategy is a general method for modifying a variety
of surfaces. It requires as a starting material a surface that contains some
functional groups though the amplification of functionality inherent in the
chemistry means that a surface with only a modest level of functional
groups can produce an interface with a macroscopically detectable concen-
tration of functional groups. Examples of surfaces that have been modi-
fied include silicon (using the hydroxyl groups of the Si(OH), layer), gold
with functional self-assembled monolayers, glass, and surface-oxidized poly-
olefin films and powders. In each case, robust ultrathin supported-films are
the products. This covalent multistep strategy is based on functional group
protection/deprotection and affords modest control over the product film
thickness. In PAA grafting, this control is based on the number grafting stages
that are used. The product hyperbranched grafts range in thickness from ca.
30 A to greater than 1000 A. The film thickness initially increases rapidly
in a non-linear fashion since each additional layer is added in a branching
fashion multiplying the number of grafting sites (Fig. 2). After several graft-
ing stages the thickness increases in a linear fashion. This variable extent of
progress of this grafting chemistry as measured by either ellipsometry on
reflective metal surfaces or as measured by titration of the — CO,H groups be-
ing introduced on higher surface area materials is very similar substrate to
substrate (Fig. 2) [18, 19].

The graft-on-a-graft strategy was conceived of as a synthetically “forgiv-
ing” alternative to an attempted but ineffective borane-based radical graft
polymerization onto vinyl terminated self-assembled monolayers [20] on
gold and was based on earlier observations that a poly(acrylic acid) graft
modified with new graft sites could be used to prepare a more dense and pre-
sumably thicker graft with subsequent polymerization or grafting steps [21].
It was also conceptually more attractive than other approaches that used
monomers as grafting agents because the multiple grafting of oligomeric
grafting reagents could compensate for inefficiencies in reactions at surfaces
as discussed above (Fig. 1).
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Fig.2 Progress of hyperbranched poly(acrylic acid) graft formation on smooth gold films
as measured by ellipsometry (e) or on polyethylene powders as measured by titration (0J)
of the supported — CO,H groups

2.1
Hyperbranched Poly(acrylic Acid) Graft Synthesis on Gold Surfaces

The synthesis of surface grafted hyperbranched films of poly(acrylic acid)
was first described on gold substrates [18]. This synthesis of hyperbranched
grafts of poly(acrylic acid) (PAA) on gold, shown in Scheme 1, began with
a self-assembled monolayer of mercaptoundecanoic acid (MUA). Activa-
tion of the carboxylic acid groups of this monolayer was accomplished
by formation of mixed anhydrides with ethyl chloroformate. While other
activating agents (e.g. carbonyl diimidazole or DCC worked), the best
yields were obtained with alkyl chloroformates. Subsequent amidation of
this electrophilic surface by an oligomeric reagent, «,w-diamino-poly(tert-
butyl acrylate) (PTBA), yielded a 1-PTBA graft on MUA functionalized
gold (1-PTBA/Au). This 1-PTBA/Au graft was initially converted to a 1-
PAA/Au graft by acidolysis with p-toluene sulfonic acid/H,;0. Subsequent
work showed that this acidolysis proceeded equally well using methane-
sulfonic acid (15 min, room temperature). Activation of the carboxylic acid
groups of this first 1-PAA/Au graft with more ethyl chloroformate followed
by treatment of the new polyanhydride surface with more «,w-diamino-
poly(tert-butyl acrylate) oligomer produced a 2-PTBA/Au graft. Acidolysis
of this second graft layer of PTBA produces a 2-PAA/Au graft. Repeating



