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FOREWORD

The ASME Pressure Vessel and Piping Division has as one of its primary objectives the dissemination of in-
formation on current research in the design, analysis, fabrication and testing of pressure vessels. This is accom-
plished through direct exchanges at the annual PVP Conference and Exhibition as well as through publications.
This special publication represents the written version of presentations given at a two session symposium, ‘“Design
Procedures for Cylindrical Pressure Vessels’’, which was held at the 1986 ASME Joint Pressure Vessel and Piping
Computer Engineering Divisions Conference and Exhibition held in Chicago from July 20-24. Session chairmen
were G. E. O. Widera (the developer) and S. E. Moore. It was the intent of the symposium to present some of
the current research work in pressure vessel design which employs either a shell theory or finite element method
type of approach.

In the lead-off paper, Farr and Harvey present the history of code formulas for cylindrical vessels under inter-
nal pressure. The impossibility of coming up with a single uniform rule is demonstrated. Widera discusses the
assumptions inherent in various cylindrical shell theories and illustrates their application via the problem of the
line load along a generator. In the paper by Galletly the results of buckling tests on steel cylinders under combined
axial compression and external pressure are given. Best overall agreement was obtained using the quadratic inter-
action equation and the Det Norske Veritas rules.

The effect of attachments or penetrations on pressure vessels has been a problem of long standing interest.
Mirza and Gupgupoglu carry out a stress analysis of a cylindrical shell having square or rectangular lugs. Their
FEM model uses doubly curved shell elements. It is shown that the maximum stress is located at the upper end of
the lug-vessel interface. In his paper, Brooks determines the stresses in the neighborhood of a rigid rectangular
attachment to a cylindrical shell with simply supported ends. Shallow shell theory is employed in the analysis.
Steele has developed a computer code, FAST2, for analyzing nozzle intersections in thin cylindrical shells. The
code utilizes the Very Large Finite Element Method in which each segment of a complex shell structure is treated
as a single element. In the present paper, good agreement is shown between the code results and those from both
thin and thick models. Following is a paper by Natarajan et al. in which a 3D FEM model for analyzing cylinder-
to-cylinder intersections is developed and the stress distribution near the intersection is then studied. The effect
of boundary conditions on these stress distributions has also been analyzed. The final paper in this group presents
an investigation by Mokhtarian and Endicott in which the sensitivity of the flexibility of cylinder-cylinder inter-
sections to the assumed boundary conditions is considered. It is shown that this sensitivity exists for short cylin-
ders and that it is more pronounced for larger penetrations.

In the next paper Raju discusses the generation of stress indices for out-of-plane moments on laterals. It is
shown that this moment governs from a peak stress and/or fatigue point of view. Jawad et al. present results
which indicate that a theoretical predicition of the behavior of tube-to-tubesheet joints is feasible for various
materials, methods of attachment and details of construction. In the final paper, Dalton and Sabbaghian discuss
the use of multilayer vessels in high pressure applications, which dates back to the 1930’s. They obtain the
prestress in wrapped vessels. Then using the power function creep low, equations describing the individual inter-
face pressures, the creep stress distribution and the safety factor as a function of time are determined.

In closing the editor wishes to indicate his indebtedness to the authors who so generously donated their talents
and time in the preparation of the individual papers.

G. E. O. Widera






WHY SO MANY DIFFERENT ASME CODE FORMULAS FOR A CYLINDRICAL VESSEL

J. R. Farr, Manager
Codes and Regulations
Babcock and Wilcox
Barberton, Ohio

J. F. Harvey, Consultant
Akron, Ohio

At first thought, it certainly would seem that
the ASME Boiler and Pressure Vessel Codes would contain
only one formula, rule, or criteria that would apply to
the safe construction of a simple right cylinder sub-
jected to internal pressure. Not so! The ASME Codes
for boiler and pressure vessels did not always proceed
in a preplanned and orderly manner. In fact, it took
a somewhat haphazard one, starting with its conception
which was a direct result of the radically increasing
number of disastrous boiler explosions in the 1800's
and early 1900's as the United States pursued its own
industrial revolution. Figure 1 shows this situation
which cusped shortly after the turn of the century at
which time its seriousness drew the attention of
several of the more highly industrialized states, as
well as the engineering community, to produce safety
rules. Of these efforts, that of the American Society
of Mechanical Engineers (ASME) has had the most pro-
nounced and comprehensive effect on assuring the
quality and safety of boilers and pressure vessels
through their publication of new construction safety
codes.

SIGNIFICANT CODE CYLINDRICAL VESSEL FORMULA
CHRONOLOGICAL CHANGES

A. Boiler and Pressure Vessel Code, Section I,
Power Boilers

In 1914, the first ASME Boiler Code was published.
One of the goals in preparing it was to provide a
simple formula that, when employed with a limited
number of materials and a few arbitrary workmanship
controls, provided a safe vessel. So it was that
the first code formula came about. It was:

P=TS xtxE (1)
R x FS

The following nomenclature is used throughout:

P = maximum allowable working pressure, lb. per
sqg in.

TS = ultimate tensile strength of material,
1b per sq in.
YS = yield strength of material, lb per sq in.

t = minimum thickness of shell plate, in.
E = efficiency of longitudinal joint or ligaments
between tube holes (whichever is least)
R = inside radius of the shell, in.
Ro = outside radius of the shell, in.
2
Z = (Ro/R)

FS = factor of safety (ratio of ultimate tensile
strength of the material to the allowable
stress) = 5

This formula simply gives the permissible pressure
based on an allowable average membrane hoop stress
in the vessel wall thickness. There was nothing
wrong with this approach. Pressures and temper-
atures were low, and shells were thin compared to
their diameter. Boiler and pressure vessel shops
were numerous and few had engineers in their
employ; hence, some degree of sophistication had
to be sacrificed for the safety that accrues from
simplicity.

Tubes were handled on a "stated" basis with the
maximum allowable working pressure given for each
tube size and gage (thickness); and for both
internal pressure as encountered in water-tube
boilers, and external pressure as encountered in
fire-tube boilers, Fig. 2. The allowable pressures
were established experimentally. Since pressures
were not high and materials were limited to lap-
welded or seamless mild carbon steel, this approach
worked quite well. In fact, it is rather inter-
esting to note that these allowable external tube
pressures established experimentally over 70 years
ago were again extensively reinvestigated by the
Pressure Vessel Research Committee, WRC Bulletin
284 The External Collapse Tests of Tubes, by



E. Tschoepe and J. R. Maison, April 1983, and
found to be completely reliable. This tube design
section from the 1914 edition of the ASME Boiler
Code is shown in Fig. 2 to illustrate the
simplicity of this approach.

This tabulation of permissible tube pressures and
the foregoing membrane hoop stress formula for
drums was essentially the entire design require-
ment of the first ASME Boiler Code. But the
accomplishments of this code were remarkable.
Boiler explosions decreased rapidly as the code
use spread. For the next decade or so, there was
little change in this code formula for a cylin-
drical vessel. There was little need for change.
Vessels were of low pressure and mostly of riveted
construction (seldom exceeding 285 psi) with thin
walls; and most of all the safety record continued
to be most impressive.

It is fair to say that in an effort to provide a
simple approach to all product forms (vessels,
tubes, pipes) it was inevitable that slightly
different formulas for the same straight geometric
cylinder, subjected to internal pressure,
dependent upon their diameter and thickness would
arise. For instance, tubes and pipes are of small
diameter, the fabrication process is one of
forming from the outside, with measurement and
tolerances established from this surface. Also,
they are frequently used in firetube boilers or
heat exchangers in which the applied pressure is
external. Hence, formulas for tubes and pipes
endeavored to simplify and cope with this
situation by using the outside diameter as the
pressure boundary surface and prime parameter in
satisfying static equilibrium (ZF = 0). Vessels,
on the other hand, while still straight right
cylinders and subjected to internal pressure, are
relatively large in diameter, are fabricated by
rolling or pressing, and are measurement and
tolerance controlled from the inside surface.
Hence, the basic pressure contact surface is
likely to be only the inside diameter of the
vessel, and accordingly, formulas for vessels use
the inside diameter for establishing static
equilibrium. Code formulas must be both accurate
and simple, which is somewhat of a paradox because
as we endeavor to use our increasing storehouse

of knowledge to gain accuracy, we necessarily lose
simplicity. So, the code faced, and continues to
face, the battle of preserving construction safety
for all vessels made by all fabricators.

In the late twenties and early thirties, the
welding process of vessel fabrication came on the
scene. This made possible a quantum jump in
pressure because it eliminated the low structural
efficiency of the riveted joint. This was widely
utilized by industry as it strove to increase
operating efficiencies by the use of higher
pressures and temperatures, all of which meant
thick walled vessels. Recognizing that the hoop
stress variation through a thick wall cylindrical
vessel can be pronounced, the code endeavored to
establish at what ratio of outside-to-inside
diameter a "pseudo average stress" formula could
be considered applicable; and beyond which the
true thick-walled Lame' formula must be adopted.
Here again, the underlying code approach was to
keep it simple.

The Code recognized this trend to higher pressures;
and in 1940, while retaining the original membrane
hoop stress formula for thicknesses less than ten
percent of the inside radius, required thicker
ones to comply with the exact Lame' formula,

Fig. 3. Shortly thereafter, 1943, it appreciated
that for such a small thickness the difference
between the average stress and the exact maximum
stress at the inside wall surface is nil, and
selected a more judicious breakpoint as one-half
the inside radius. It provided a simple linear
formula for the maximum allowable working pressure
that also closely approximates that given by the
more exact Lame' formula for thicknesses below
this breakpoint, Eq. 2, while requiring the Lame'
formula for thicknesses exceeding one-half the
inside radius, Eg. 3. This latter formula for
thicknesses greater than one-half the inside radius
has remained throughout the code evolution:

P = SEt (2)
R + 0.6t
_ z-1 (3)
P=SE O

In 1952, Section I made another effort to fine-
tune the accuracy of its formulas for thicknesses
less than one-half the inside radius and adopted
two formulas within this range; namely, one for
thickness below a half inch, and one for thickness
above a half inch, Fig. 3. The thought was to
make provision for the reduction of wall thickness
by threading that was frequently used in vessel
fabrication in this period.

In 1959, a further effort was made to broaden
these formulas to embody the effect of temperature
on creep relaxation of the hoop stress gradient
through the wall thickness, and incorporated a
material temperature coefficient "y" for wall
thicknesses greater than one-half inch. The
resulting formula became:

p = SE (t - 0.1) (4)
TR + (1-y) (£-0.1)

where y has the value shown below:

TEMPERATURE, F
900 1250

and and
Below 950 1000 1050 1100 1150 1200 Above

0.7 0.7 0.7 0.7 0.7

Ferritic 0.4 0
Austenitic 0.4 0
Alloy 800 0.4 0
0
0

N
O OO o
NN

0. 0.7
0. 0.5
800H 0.4 0. 0.5
825 0.4

L .
[eloNeNe)
BB D

Finally, in 1971, the insignificance of differ-

entiating in these formulas for thicknesses below

or above one-half inch (but below one-half the

inside radius) was reappraised and the above

formula for a cylindrical vessel under internal

pressure was altered to its present simpler form:
SE (t-C)

P = R T (Ioy) (c=0) (3)

where C is an allowance for threading and
structural stability. For uniform thickness
cylinders, such as drugs, C = 0 and for
temperatures below 900 F, y = 0.4 which gives the



usual formula for boiler drums as

SEt
=== 6
P=R+o.6t (&)

These are the code formulas in Section I for right
cylindrical vessels under internal pressure that

prevail today.

Unfired Pressure Vessel Code, Section VIII

The success of the ASME Boiler Code, Section I,
drew attention to the associated multitude of
"unfired" vessels, so-to-speak, that were not
directly associated with or in contact with a
combustion furnace; but nonetheless were subjected
to pressure and temperature from a contained media.
The need was eminent as industry sought to use the
universal catalysis of high pressure and tem-
perature to increase operating efficiency, and the
new welding processes and high strength materials
provided a means to achieve this goal. Thus was
born in 1925 the ASME Unfired Pressure Vessel Code,
Section VIII, later to be renamed "Pressure
Vessels."

Section VIII also adopted the thin-wall membrane
circumferential or hoop stress formula for setting
the thickness or the maximum allowable working
pressure, Fig. 4. The formula was simple and
accurate when the vessel diameter/thickness is
above 20. This formula was used in Section VIII
until the 1943 Edition. At that time, the formula
was modified to more accurately determine results
for thicker walls due to higher temperatures and
pressures. That modified formula is still used

in the 1986 Edition of Section VIII, Division 1.
Of course, there are formulas still in the Code
for very thick vessels (Lame' formula) and for
setting thickness or maximum allowable working
pressure based on the outside radius.

Although the hoop stress due to internal pressure
is twice the axial stress due to internal pressure,
in tall vertically-supported vessels, there may

be axial stresses from other loadings. In 1957,

a longitudinal or axial stress formula was added
to Division 1. Thickness of the vessel may be set
by this stress when the loadings are from both
internal pressure and other loadings such as dead
loading and wind or ‘earthquake loading.

With the 1968 Edition of Section VIII, two
divisions of the section were established. The
old unfired pressure vessel code became Section
VIII, Division 1, Pressure Vessels; and a new
section was added, Section VIII, Division 2.
Alternative Rules for Pressure Vessels, Fig. 5.

The new division was based on a factor of safety
of three on tensile strength and was limited to
vessels operating in the temperature range where
tensile and yield strength sets allowable stresses.
In addition, the basic stress theory was different.
Instead of the Maximum Stress Theory, the new
division was based on the Maximum Shear Stress
Theory. 1In addition, the new division required
that calculations be made to establish the adequacy
of components. Consequently, the formula for
circumferential or hoop stress was only one for
setting the initial thickness of a shell and was
based on a modified thin-wall formula. This is
similar to but not exactly the same as the

Division 1 hoop stress formula. The new division
also contained a different formula for determining
the thickness or maximum allowable working

pressure for thick-wall vessels. It was a version
of the Lame' formula.

Again, longitudinal or axial stress formulas were
approximate. When all loadings were taken into
account, the actual stresses are to be determined
and compared to the maximum allowable stress
intensity. If the resulting stress is compressive
due to a combination of the internal pressure and
the other loadings, the compressive buckling
stresses are to be considered.

THE OUTLOOK FOR CHANGE

Will the ASME Code ever reach the point where it will
have a single uniform approach or formula or rule for
the construction requirement of a cylindrical vessel

subjected to internal pressure? Hardly, - - - and for

the very simple reason that it must continue to fulfill

its mandate to provide rules for the safe construction
of all kinds of vessels, types of manufacturers and
kinds of materials. There is no single all inclusive
panacea. It must make available suitable methods and
means for use and implementation by the small
fabricator or "garage-shop" builder of low pressure
heating boilers, vessels or tanks who does not have a
professional engineering staff at his disposal. This
segment makes up by far the major number of vessels
built each year. Yet, the very same ASME Code body
must also provide for the safe construction of the
most advanced sophisticated vessels employing exotic
materials in hostile environments and subjected to
ultra-high pressures; and constructed by large
companies well staffed with professional engineers
backed up by extensive computer facilities and
research organizations. This code approach is
illustrated by Fig. 6 for the ASME Pressure Vessel
Code Section VIII wherein the three divisions provide
for a degree of trade-off for knowledge in the areas
of stress analysis, materials and fabrication
techniques. In this manner, the code "fits the tools
to the job." The "tools" are knowledge and the "job"
is pressure vessel safety. 1In all probability, there
will be changes in the code requirements for cylin-
drical vessels subjected to pressure, but they will be
directed toward the "purpose of service" approach. An
illustration of such a future change is that now in
the formative stage and is tentatively known as
Division 3 of the ASME Pressure Vessel Code, Section
VIII. While Section VIII, Division 1 is the oldest
code which establishes a minimum vessel-wall thickness
and requires no stress analysis, Section VIII,
Division 3 is at the opposite end of the spectrum and
requires a total stress analysis of the entire vessel
under all operating,service conditions.
"design by analysis" and simply means demonstration by
analytical or experimental stress and strain analysis
that all parts of the vessel are in compliance with
code established limits. The latter ASME Code is not

yet complete, but it is indicative of the code approach

to safe vessel construction by letting the
"requirements" fit the "purpose."

This is called



Boiler Explosions

¥ 21 Tuhes for Water-Tube Boilers. The minimum thicknesses
400 M of tubes used in water-tube boilers measured by Birmingham wire
gage, for maximum allowable working pressures not exceeding 165 Ib.
per &q. in., shall be as follows:

Diameters lcse than 3 in............ . No. 12 BW.G.
Diameter 3 in. or over, but less than 4 in . No. 11 BW.G.
Diameter 4 in. or over, but less than 5 in. . No. 10 BW.G.
Diameter 5 if.....coeuvrneinrinteciraonarianciaans . No. 9 B.W.G.
500 i~ 1 The above thicknesses shall be increased for maximum allowable
working pressures higlier than 165 lb. per sq. in. as follows:
Over 165 h. but not cxcoaling 235 M. . 1 gage
Over 235 Ib. but not excceding 285 Ib 2 gages
Over 285 lb. but not excceding 400 Ib.. .. 3-gages

Tubes over 4-in. diameter shall not be used for maximum allowable
965 working pressures above 285 1b. per sq. in.

22 Tubes for Firc-Tube Boilers. The minimum thicknesses of
tubes used in fire tube boilers measured by Birmingham wire gage, for
maximum allowable working pressurcs not exceeding 175 1b. per sq.
in., shall be as follows:

Diameters less than 2% ia.... ... No. 13 B.WG.
Diameter 2% in. or over, but less than 3% in. . No. 12 B.W.G.
Diameter 3% in. or over, but less than 4 in. . No. 11 B.W.G.
100 F - Diameter 4  in. or over, but less than 5 in. o. 10 B.W.G.
Diameter 5 9 B.W.G.

For higher maximum allowable working pressurcs than given above
the thickuesses shall be iucreased one gage. Il

Fig. 2 Tabulation of Permissible Tube Pressures for
Water-Tube and Fire-Tube Boilers from the First ASME
Boiler Code, 1914

0 1
1850 1900 1950 2000

FIG. 1 Boiler Explosions in the USA, 1879-1930

CYLINDRICAL SHELL FORMULAS, SECTION I

Code Year Thin-Wall Formula Thick-Wall Formula
TS t E
1914 P = S R none
1940 pelStE paISE 2°1
FS R FS Z+1

(for thickness over 10% of R)

sEt 2-1
1943 p - —SEt sp 2L
R + 0.6t B SE Z+1

(for thickness over one-half R)

0.8 SEt

1952 P= -
R + 0.6t

(for thickness less than 1/2")

SE(t - 0.1) 2-1
P — = = —_—
R+o0.6(t-0.D) P=SEZA

(for thickness over 1/2")

1959 - 0.8 SEt
R + 0.6t
(for thickness less than 1/2")
SE (t - 0.1) 2-1
P=———t = 93] - =]
R+ (1-y(c-0.0 PESEa
(for thickness over 1/2" and
"y" is material temperature
correction coefficient)
SE (t - Q) 2-1
1971- Ps P = SE ——
present R+ (1-y)(t-0) Z+1

Fig. 3 - History of Cylindrical Shell Formula in ASME Code, Section I



CYLINDRICAL SHELL FORMULAS, SECTION VIII, DIVISION 1

Code Year Circumferential Stress Lon¢itudinal Stress

PR and P =

_ SEt
1925 t = SE = none
PR
1943 t = sE-o0.6p none
_ __SEt
P=g7ro.6t
PR _ PR
1957— t=sE-o0%6p (Note 1) t = 555+ 0.4p (Note 2)
present
_ SEt _ _2SEt (Note 2)
P = gro.ec (Notel) P=g-o0.4t
Note 1: Limited to a thickness not to exceed one-half of the inside

radius and a pressure not to exceed 0.385 SE. Beyond these

limits, the formulas given below apply.

Limited to a thickness not to exceed one-half of the inside
radius and a pressure not to exceed 1.25 SE. Beyond these
limits, the formulas given below apply.

Note 2:

Circumferential or Hcop Stress Longitudinal or Axial Stress

t = R(2" - 1) where 2z =(§§f§) t = R(z% = 1) vhere z =(&+1)
2 2
p = sE 221 where z =(Rit P = SE(z - 1) where z =(2t
Z + 1 R R

Fig. 4 - History of Cylindrical Shell Formulas, Section VIII, Div. 1

DIVISION 1

DESIGN BY:

Cookbook Formulas
(No stress Analysis)

With

Minimum material, fabrication

DESIGN BASIS

ASME PRESSURE VESSEL CODE, SECTION VIII

DIVISION 2 DIVISION 3
(Tentative)
DESIGN BY: DESIGN BY:

Minimum Thickness Formulas
and Limited Analysis

Total Stress Analysis

With With

Extensive material, fabrication Elaborate material, fab-

and examination requirements

Based on

(2) Elastic stress through
wall thickness, and

and examination requirements

Based on

(a) Elastic stress through
wall thickness, and

rication and examination
requirements

Based on

(a) Full plastic yield stress
through wall thickness,

CYLINDRICAL SHELL FORMULAS, SECTION VIII, DIVISION 2

Code Year Circumferential Stress Longitudinal Stress

PR € =

PR 0.5PR + F
S = 0.5P - 0.5P

1968- t = (Note 1)

present

If P > 0.4S, the
following may be used:

(R + t)
R

n

where 2&n is the natural log

Use if F is positive and exceeds 0.5 PR. If F is

Note 1:
negative, the condition of buckling shall be considered.

Fig. 5 - History of Cylindrical Shell Formula, Section VIII, Div. 2

(b) Maximum stress theory

of failure

SEt

P =R +o6e

and

(b) Maxioum shear dtress
theory of failure

(b) Maximum shear stress
theory of failure

st . _¥S In (R/R)
P=R+o5c E 1.75

Fig. 6 - Trends in Code Construction Requirements






VALIDITY OF VARIOUS SHELL THEORIES APPLICABLE IN THE DESIGN AND
ANALYSIS OF CYLINDRICAL PRESSURE VESSELS

G. E. O. Widera
Mechanical Engineering Department
University of lllinois at Chicago
Chicago, lllinois

Abstract

The present paper discusses the inherent
assumptions and range of applicability of various
simplified shell theories which are employed in the
linear analysis of their pressure vessels. Via the
problem of the line load along a generator, it is shown
how to obtain the complete solution through a proper
superposition of the solutions from the simplified
theories.

1. Introduction

Pressure vessel analysts and designers have long
made use of shell theory to solve their problems.
Various types of shell theories have been proposed in
the literature. These theories are in wide use, but
because of their approximate character they often lead
to failures which could have been predicted only on the
basis of more refined theories. However, even the so-
called refined theories are themselves derived from the
exact three-dimensional elasticity equations on the
basis of artificial assumptions whose validity is often
open to question. Moreover, in the process of making
these assumptions certain contradictions occur which
have resulted in shell theories of great variety and
complexity.

The reduction of the three-dimensional equations of
elasticity to an equivalent set of linear two-
dimensional equations is based on the assumption that
the shell be thin and that the displacements be small
compared to the thickness. The classical derivation of
thin shell equations incorporates hypotheses, such as
those of Kirchoff, which lead to a priori assumptions
regarding the spatial distribution of displacements and
stresses over the thickness of the shell. Another
method of deriving shell equations, one which is free
from a priori assumptions, is that of the asymptotic
integration of the elasticity equations. The method
incorporates the use of the boundary layer technique to
furnish, depending on the choice of characteristic
length scales, different sequences of systems of
differential equations. Subsequent integration over the
shell thickness and application of the surface boundary

1

conditions yields the desired two-dimensional shell
equations. The lowest order system so obtained
represents the simplest appropriate shell equations.
The higher order systems systematically incorporate
thickness corrections associated with the effects of
transverse shear and normal stress.

Many authors (see [1-8], for example) have employed
the method of asymptotic integration to derive various
shell theories. Relatively little, though, has been
written [9-14] about the application of these theories
to the solution of actual shell problems, such as those
involving pressure vessels. It is the aim of this paper
to demonstrate the assumptions underlying the asymptotic
theories and to illustrate their application with
reference to the particular problem of a fixed-ended
cylinder subjected to a constant line load along a
generato». The starting point of the analysis is a set
of very general shell equations developed by
Goldenveizer. The loading and solution state is
represented in the form of a Fourier series in the
circumferential direction. Depending on the number of
circumferential waves considered, various
simplifications of the general shell equations can be
carried out on the basis of the results for the
asymptotic theories. The complete solution is obtained
by a superposition of the solutions of the simplified
systems of equations.

2. Formulation

In what is to follow, a closed cylindrical shell of
middle surface radius a, constant thickness 2h and
length L is assumed. A point on the middle surface will
be specified by the coordinates £ and 6 (see Fig.1).
Here, £ is the dimensionless arc-length of the generator
and 6 the central angle measured from the initial
generator. According to Goldenveizer [9], the most
general equations governing the unsymmetric deformation
of a thin cylindrical shell are given by

2 = 2 2 =
[a_+(1_‘i)L]u+(ﬂ)a_V_-\,ﬂ+32xp=o (1

9E2 2 23802 2 9E39 3k
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where u, v, w are the components of displacement in the

axial, circumferential and radial directions,
respectively; Pyxs» Pgs Py the components of surface
loading; Vv Poisson's ratio; E the modulus of elasticity;
and
2 2
a2 =82, 3% , =2
32 362 a
= _ 1-v2 - _1-v2 - _ 1-v2
P_= P_» P Py P_= P (4)
X oen X % 2En © % 2gn 2
)‘2=l‘_2_
3a?

Equations (1-3) are determined on the basis of the
following sets of equations:

Equilibrium:
N N M M
= ——2§+ap =0, 8% _ ——2+aQe=0
g EL] 9E L]
N AN M oM
_x6 __8_ 9g+ap =0, X 9% aQ = (5)
3E 38 3 38 X
39 30 M
Ne+ —= 4 — + ap, = o, Nx9+Nex+ ] =0
g 90 a
Constitutive relations:
3
Nx = 2Eh (ax+vee), M= - EEE——-—(x +vxe)
1-v2 3(1-v2)
3
N2 (e tve ), Mg= - EEIL--(xe+vxx) (6)
1-v2 3(1-v2)
2 3
Ne2Eh(_y_+ln_§).Me=2eh X
v 20 3a X o301+
= - 2chy -
Nex ) Mex Mxe
1+v 2
Geometry of deformation:
ex=l?£, ee=l(.3.‘£_w),Y_l(ﬂ+3_“) (7)
a 3¢ a 936 a d¢g 36
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Here, N, M and Q represent the force, moment and
transverse shear force stress resultants, and

€, Y and X represent the normal strain, shear strain
and changes in curvature, respectively.

The solution of Egs. (1-3) for a specific problem
is carried out using four boundary conditions on each of
two transverse edges £=0 and £=L/a as well as eight
periodicity conditions which stipulate that static and
geometric quantities in longitudinal sections must
return to their original values after a complete turn.
Particular integrals to these equations can often be
obtained either via the use of approximate methods or by
employing membrane theory.

Let us consider the case where the loading and
support cause a symmetrical state of stress relative to
the initial generator 6=0. Then for a closed
cylindrical shell, it is convenient to seek integrals of
the homogeneous part of Egs. (1-3) in the form of a
trignometric series in terms of the variable 6,

u="7 Aekgcos md, etc. (8)

m=0

Substitution into Egs. (1-3) yields an eight degree
characteristic equation for the determination of the k's
corresponding to each m,

k8-4m2kb+6mik!~(8-2v2)m2kH+( 1-v2) \"2k"

(9)
-4m2(m2-1)2k2+m*(m2-1)2 = 0

This formula as well as the other calcuations which are
required, are generally too cumbersome to be used in the
analysis of pratical problems. One therefore seeks
simplifications obtained by omitting insignificant terms
and which thus result in approximate theories.

2.1 sSimplified Bending Theory

The simplified bending theory or theory of edge
effects rests on the following hypotheses:
Geometry of deformation:

It is assumed that the dominant effect is that of
the normal displacement. Thus, the expressions for
Egr Xg and X can be simplified as follows:

2 1 2
€9=_E, 9=1_3_", - (10)
a a2 382 a2 3£30
Constitutive relations:
The expression for Nxe' Nx' Mx’ Me can be replaced
by:
2E
Nx6= ZEby, ’ ex+vse=0
1+v 2
(11)
i 3 - 3
Mx= 2Eh Xx’ MO = 2Eh3y %
3(1-v2) 3(1-v2) X



Equilibrium:

In the fourth equilibrium equation only
and Q, need to be retained while in all others
Mxe, Mex' and Qe can be set equal to zero.

M

MB

e!
This theory has built into it the fact the
characteristic length for changes in the axial direction

1
is 0[(ah)/§] and O(a) in the cirumferential. It thus
a J
holds for Ikl EEDN /% m << A /%

2.2 Semi-Membrane Theory

The semi-membrane theory or theory of the basic
state of stress is also associated with a characterestic
circumferential length scale 0O(a) while its axial one is
ofa(a/h)/21. This implies m << xJ/2, k = x1/2 m2. It can
be obtained on the basis of the following assumptions:

Geometry of deformation:

The general expressions for ee and Yy can be
replaced by
v _ 4= 0, du , v _, (12)
98 396 &

Constitutive relations:

The relations for N 9° NB’ Mx, Me can be
simplified as follows:

2Eh

= X =
Nxe (=), ee+ ve 0
1-v 2
3 3 (13)
B =T g EE
3(1-v2) 3(1-v2)
Equilibrium:

All equilibrium equations except the fifth can use
M _=M_,=M, =0 =0.
x x0T Ox *x

2.3 Simplified Donnell Theory

The simplified Donnell theory corresponds to axial
1
and circumferential length scales O[(ah)/é]. It holds

J
for m > )\ /é, with k determined from the relation

(k2-m2) 4+ (1224 = o (14)
A2
The theory can be obtained from the original cylindrical
shell equations through use of the following
simplifications:
Geometry of deformation:

The changes of curvature expressions contain only
the normal displacement,
1 2 1 2 2
x= L B¥ gLl 2v g 12w (15)
a2 3g2 aZ 3062 a2 3£38

Constitutive realtions:

The relation for the membrane shear force can be
taken in the form:

_ _ 2Eh ¥y
Nxe— —Nex——( ) (16)
1+v 2
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Equilibrium:

In the second equilibrium equation we can set Qe=0
while in the sixth M6x=o can be assumed.

It is noted that the simplified Donnell theory is
often used for both small m and large m. This however
gives acceptable results only when one is dealing with
shells which are not too long.

2.4 Plate Bending Theory

J
For every large m, m >> ) 72 and k determined from
(k2-m2)% = 0 (17)
the cylindrical shell equations become two uncoupled
sets: those corresponding to plate bending theory and
those to plane stress theory. They can be obtained if,
in addition to the assumptions of Section 2.3, the
following ones are made:
Geometry of deformation:

The expression for ee is taken as

€.= — — (18)
Equilibrium:

The third equilibrium equation becomes

30 39
—’5+—9-+apz=o (19)
3 30

2.5 Membrane Theory

It is recalled that membrane theory gives an
adequate description of shell behavior only at
sufficient distances from lines of distortion of the
stress state. Examples of such lines are the: edges of
a shell, lines along which there occur discontinuities
in the external load components and certain of their
derivaties, lines along which the middle surface of a
shell is discontinuous or the curvature if the middle
surface changes abruptly, and lines along which the
rigidity of a shell or its thickness undergo sudden
changes.

The characteristic length scales inherent in
membrane theory are both 0O(a). The region of
applicability of membrane theory can be shown [9] to be
given by

hZot(m2-1)2L% (20)
3(41)ab

For a shell with no surface loading and fixed radius,
thickness, and m (number m here characterizes the edge
loading), the accuracy of membrane thoery is seen to be
proportional to the fourth power of the length of the
shell. It thus is necessary for the shell to be
relatively short in order for it to be able to be
analyzed by membrane theory. The exceptions are the
cases of m=0 and m=1 for which a statically non-self-
equilibriated loading exists on transverse sections.
The length in these cases can be as large as one wishes
as membrane shells here behave like beams of hollow
cross-section.



