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Preface

Subdivision surfaces were introduced in the Computer-Aided Design (CAD) liter-
ature in the late 1970s, and they have since attracted much attention in the fields
of computer graphics, solid modelling, and computer-aided geometric design. It is
the purpose of this book to introduce the essential mathematics underlying these
surfaces, at a level that is accessible both to graduate students in computer sci-
ence and to researchers and practitioners with a similar or stronger mathematical
background.

In terms of mathematical content, the book has two main goals. The first is
to provide a unified view of the field. The second is to explain the mathematics
carefully, but as simply as possible, so that the reader will be able to easily read
the literature.

It is easy to get the impression, from a first encounter with the subdivision
literature, that the field consists of a miscellaneous collection of smoothing tech-
niques, some inspired by classical B-spline methods, and others that are completely
ad hoc. In particular, even when taxonomies of methods are given. the classifica-
tions do not seem to lead to sharp distinctions. For example, methods designed
for quadrilateral or triangular meshes can nonetheless be applied to other kinds of
meshes, including meshes of opposite or mixed type. Similarly, the distinction be-
tween primal and dual methods seems slightly obscure, and in fact this distinction
also fails to be perfectly sharp: even if we restrict our attention to the most special
classes of methods, they may be of mixed primal-dual type.

In fact, however, there is a great deal of unity and structure to the field. The
main idea we use to show this, is to arrange all of the standard subdivision methods
in a simple hierarchy based on the class of spline surfaces they generate. The most
special methods in this hierarchy are those that generate classical tensor-product
uniform B-splines, while the most general methods in the hierarchy correspond to
generalized splines, i.e., linear combinations of nodal functions which themselves
can be obtained by applying an affine-invariant subdivision procedure to the unit-
impulse function. A second idea which shows the unified nature of the field is that a
step of the basic subdivision method can be viewed, in the B-spline case, as a series
of simple averagings done in alternation between the initial refined mesh for the step
and the dual of this mesh. If we decide to alternate back and forth an even number
of times at each step, then there is no need to actually construct the dual mesh, and
we have what is called a primal method. On the other hand, if we decide to compute
these averages an odd number of times, then the dual mesh must be constructed in
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some way, and we have what is called a dual method. This alternating-averaging
structure is an important thing to notice. A generalized version of alternating
averaging occurs for more general classes of subdivision methods, such as box-
spline methods, and even y/3-subdivision, a non-box-spline method, can be viewed
as involving a form of alternate averaging.

The organization of the book is discussed in detail in Section 1.1. One signifi-
cant aspect of the organization is that Chapter 1 jumps ahead and makes statements,
about subdivision methods and surfaces, that are only justified later, in the more
orderly mathematical presentation which begins in Chapter 2. One of the reasons
for this choice of organization is to make the book more useful as a graduate-level
textbook in computer science. In such a situation, the student may already have a
great deal of informally obtained information about, say, Catmull-Clark and Loop
subdivision and may be interested in seeing a description of these methods without
having to first read three or four chapters. Also, Chapter 1 contains basic infor-
mation that may help the student, or general reader, make sense of what is often
left unclear in the literature. For example, as is the case for the implementation
of solid-modelling systems, it is important when describing subdivision methods to
distinguish between a logical mesh and a polyhedral mesh (this is done carefully in
Chapter 1, but not always in the literature). Similarly, Chapter 1 gives descriptions
of various kinds of subdivision matrices that are used in the description and anal-
ysis of subdivision procedures (many papers in the literature simply refer to “the”
subdivision matrix, which is confusing for the novice, since in fact there are many
different varieties of subdivision matrix). Chapter 1 also describes splitting schema,
dual meshes, and regular and nonregular meshes, and it presents the hierarchical
classification described above. In particular, within this hierarchy, the distinction
is made between basic and variant methods, where the latter are designed for use
in nonregular meshes.

Early drafts of the book have been used as a reference text in a one-month
segment of a graduate course in solid modelling, in the computer science department
of the Université de Montréal. This segment includes most of Chapter 1, much of
Chapter 2, some of Chapter 3, and some brief remarks on convergence, smoothness,
and surface evaluation and estimation (Chapters 5 and 6). This experience led
to the conclusion that the material is difficult for beginning graduate students in
computer science, but quite accessible to mathematically inclined Ph.D. students.
Material from Chapter 7 (shape control) could also be included in such a graduate
course, and the Notes might also be useful to the student.

The book should probably be read in the order in which it is written, with
the exception of the Appendix and the Notes, which should be consulted as needed.
Any material that is already familiar can, obviously, be skimmed, but all chapters
depend on the basic information in Chapter 1, and Chapters 2, 3, and 4 are pro-
gressively more general. All chapters also rely heavily on Chapter 5, on convergence
and smoothness, although these topics are postponed until the basic theory of the
first four chapters is in place. Chapters 6 and 7 rely on earlier chapters, and in par-
ticular, the last section of the main text, on shape control, makes use of the global
subdivision matrices of Chapter 1 and the Generalized-spline subdivision methods
of Chapter 4.
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The mathematical level required to read the book is that of an advanced
eraduate student in computer science. It is assumed in particular that the reader
has taken courses in Linear Algebra and Advanced Calculus. It is also assumed
that the reader is generally familiar with B-splines, at the level it would normally
be taught in an undergraduate computer graphics course (based, for example, on
[147, Ch. 15] with some supplementary material added on bicubic surface patches,
or on [53, Ch. 11]). The presentation of B-spline surfaces is narrowly focused on
subdivision surfaces: the reader who wants a thorough understanding of B-splines
and Non-Uniform Rational B-Splines (NURBS) should read the books of Cohen,
Riesenfeld, and Elber [30], Farin [51], and Piegl and Tiller [127]. We note finally,
on the topic of the mathematical level of the book, that it increases quite sharply
following Chapter 1.

The reader described in the previous paragraph may from time to time be
required to learn techniques not previously seen. A good example is generating
functions. It is not possible to read the subdivision literature without knowing
something of these: they are used by many authors, because they often lead to
simpler derivations. On the other hand, a typical computer science program may
not include discussion of this topic, and it may be necessary to consult, for example,
Knuth’s The Art of Computer Programming [72, Sec. 1.2]. Similarly, we make use
of the complex Fourier transform (although some of the related derivations are
relegated to the Appendix) and the discrete Fourier transform. Many graduate
students in computer science know of these techniques (perhaps because of a course
in signal processing or in computer vision), but again, a typical computer science
program may not include discussion of these topics.

The idea of structuring the field as subclasses of generalized splines came
from the understanding gained by reading the work of Peters and Reif, and in
particular, by reading a draft of [124]. Similarly, the fundamental nature of the
primal-dual alternation in B-spline methods is quite evident in the original Lane
Riesenfeld paper [81], and it is brought out very clearly in the references [101, 151,
177]. On the other hand, the formal structuring of the field as we have done it
is new, and our use of centered nodal functions aids considerably in bringing out
the essential symmetry of subdivision methods. The presentation of box splines in
Chapter 3 is, we believe, made quite accessible by developing it in exact parallel
with the development for tensor-product B-splines. Similarly, the later development
of subdivision polynomials related to generalized splines is also done in parallel with
the more special cases just mentioned, which leads to very natural analyses of the
corresponding general methods.

Exercises and projects appear in separate sections at the end of each chap-
ter. Course materials, including solutions to the exercises (and results for a few
of the projects) are available to professors using the book as a course text; see
www.siam.org/books/ot120 for information. The Notes appear at the end of the
book. References to theorems, equations, figures, etc. have an appended subscript
giving the page number: for example, (2.33) 4, refers to equation (2.33), which ap-
pears on page 65, and Figure 2.7 4 refers to Figure 2.7 on page 68. (This idea,
as well as the notation pQ4, pT'4, and dQ4 used to identify the standard splitting
schema, were also adopted from an early draft of [124].) In the chapters following
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Chapter 1. the end of a formal proof is indicated by an open box O, and the end of
a remark or an example that has been set off from the main text by a filled box W .
Note that even in the first chapter, which is relatively informal, we occasionally
adopt a formal style for definitions, but only when it seems necessary for clarity.
Finally, certain remarks are annotated with a star, as in the case of Remark* 1.2.4,,,.
Such remarks, although perhaps important, contain details that need not be thor-
oughly understood on a first reading. Alternatively, a starred remark may simply
mention that the material immediately following can be skimmed on a first reading.
Occasionally starred remarks refer forward to results not yet proved.

Many people provided useful comments on the manuscript, at various stages,
including P. Beaudoin, S. Bouvier Zappa, F. Duranleau, D. Jiang, V. Lazar,
V. Nivoliers, V. Ostromoukhov, J. Peters, P. Poulin, 1. Stewart, J. Vaucher, Z. Wu,
M. Zidani, and an anonymous referee.

Francois Duranleau and Di Jiang produced most of the more difficult figures.
with help from Wu Zhe. Figure 1.5,; was produced by Wu Zhe using Quasi 4-8
subdivision [161], starting with a model obtained from www.blender.org. All three
of these people provided considerable help over a long period.

The members of the team at SIAM were unfailingly friendly, helpful, and
efficient. In particular, the authors are very grateful to Elizabeth Greenspan, Sara
Murphy, Nancy Griscom, and Lisa Briggeman. They made this a better book.

The second author wishes to thank the Natural Sciences and Engineering
Research Council of Canada for its support of his research. He also wishes to
express his gratitude to Warren and Enid Damer, without whose inspiration this
book would not have been written.

Lars-Erik Andersson
Linkoping, Sweden

Neil F. Stewart

Montréal, Canada

July 2009

It is impossible for an expositor not to write too little for some, and too
much for others. He can only judge what is necessary by his own expe-
rience; and how long soever he may deliberate, will at last explain many
lines which the learned will think impossible to be mistaken, and omit
many for which the [uninitiated] will want his help. These are censures
merely relative, and must be quietly endured. I have endeavoured to be
neither superfluously copious, nor scrupulously reserved, and hope that
I have made my author’s meaning accessible to many who before were
frighted from perusing him, and contributed something to the public by
diffusing innocent and rational pleasure.

Samuel Johnson



Notation, Conventions,
Abbreviations

Points in RY are denoted in ordinary type. For example, a spline surface is denoted
by the vector-valued function x(u,v) with values lying in RV, and similarly for a
spline curve x(t). When modelling physical space, the dimension N of the space
RN is often equal to 3. But N may be arbitrary-the control points of a subdi-
vision mesh may correspond to general attributes. We do not distinguish between
N-dimensional Euclidean space (an affine space of points) and the real vector space
RN: points in Euclidean space are viewed as vectors starting at the origin. The
value of the function  viewed as a vector in RV, the associated control points, and
certain related coefficients such as ¢; are written as row vectors. Other vectors are
written as column vectors.

The usual meaning of the principal symbols used is as shown in the following
list, but it sometimes happens that a variable with the same or similar name is used
locally for some other purpose.

A a matrix Ay ), Or a matrix
A(2xk) representing a mapping A
&j coefficients in eigenvector expansion
C*, C*(R), C*(R?) k times continuously differentiable
e the unit cube in R*
., C,Chy Chy ey constants
d=m—1 (bi-) degree of (tensor-product) B-spline,

m the order of the univariate B-spline
D = % D* D,, D. (e € R?), V derivative operators
Ao A AL difference operators
o partial differentiation

ou

JB boundary of a subset B of R?

e number of edges in a face

e" ={ey,....em} directions defining a box spline
":’111 e with e; deleted

(‘z’,.',.) e with e; and ¢; deleted

&/2 =1 Yo e centre of box-spline coefficient grid
E;, E! control point (Catmull-Clark)

XXi



xxii Notation, Conventions, Abbreviations
Ey the set of edges in face f
f a face in a logical mesh
f=rft), f=r(y) a function of the variable ¢ or y
F;, F! control point (Catmull-Clark)
Fy, ..., F, faces in R?
F, ....F, faces in manifold M
F(y—1) a function in L'(R?)
#(2), Gu(2), Gf(2), Gy, ,(2) generating functions
.. G coefficient grids
(support of subdivision polynomial)
Gy subset of R?
(defined by k-ring neighbourhood)
G i G, grids defined by e™
h resolution of grid, grid-size
i a general index, or v/—1
kol general indices
(often indexing control points)
teZ indexing logical vertices
L the number of control points in a mesh
L'(R?) the Lebesgue integrable functions on R?
Ai eigenvalues of local subdivision matrix
m (bi-) order of a (tensor-product) B-spline, or

1\[. A[’ A[* MY, A[m[d~ 4\11'1'1 n

M= ()\[ ]))
N

N (h;u), N'(h;t), N*(he*;y), N(y)

n
n(y)

v
Piits ey PUE RN
P(LxN)
P(wx1)

p(z), p(h; 2). q(=)

Uk =Y Sk—2
RN

R, Q.S

S
x, £V

(0,1), S
L xN)

total order of a box spline
logical mesh
polyhedral mesh
dimension of RV
nodal functions
valence of a logical vertex
normal vector depending on parameter y
subdivision iteration index
control points (row vectors)
matrix with L rows of control points
scalar control points
(case of an infinite grid)
generalized polynomials corresponding to
sets of control points
control points after subdivision
real vector space of dimension N
control points (Catmull-Clark)
local subdivision matrix
global subdivision matrices
functions used in Fourier analysis
subdivision polynomial
transpose of a matrix
translation of control sequence
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(u,v)!

Vv, Vv’
w e RY
w = (W2Tri,/n

w, w*, w

w
w

&= Bpixny = B, v)
& = By = 2(t)

y = (u,v)’

7

7> =7 x7 C R?

Z;, =1{0,...,L -1}

Q, Q

K| = [ki] + kol
la]

[a]

lg(-), In(-)

n* <
/IS

m

R, 3

A()

conv(-)

det(-)

voly_o

supp(-)

X

®

N, (y*"F(y))

independent variable in univariate case:

r=x(t)

independent variable in bivariate case:

x=x(y), y = (u,v)
control points (Catmull-Clark)
vector (in the context of box splines)
nth root of unity
standard parameters in Butterfly,
Kobbelt, and Loop methods
cardinality of the natural numbers
variable of Fourier transform
spline surface
spline curve

independent, variable in bivariate case

the integers (bi-infinite grid)

two-dimensional vectors of integers

the integers modulo L

variable in generating function,
translation operator, argument of
subdivision polynomial s(z)

control sequences

right and left eigenvectors of local
subdivision matrix

see w above

open subset of R? and its closure

Euclidean norm of vector in R? or RV

l-norm of k = (ky, ko) € Z2

greatest integer less than or equal to a

smallest integer greater than or equal to a

logarithm base 2, base e

7" denotes transposition and complex
conjugation of the complex vector n
complex conjugate of the component 7,

real and imaginary parts

interior of the set A

convex hull of a set of points
determinant of a matrix
Lebesgue measure in RF—2

the support of a function
equivalence, or asymptotic equality
value assignment

defined to be equal

vector cross product

convolution

Fourier transform of N, y*~"F(y)
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Conventions
o If z = (z1,22), a = (ay,az2), then z* = 2" 252

) is a polynomial in two variables, then p(z?) = p(z%.23)
/2" _1/2"
=p(z"" ;2’7 ).

o If p(2) = ,pa2, f = f(t), then p(2)f = >, pa(2"f).
e Let j = (J1,42), d = (dy,ds), z= (21, 22), k = (k1, k2). Then

o If p(z) = p(z1,
1

22
and p(z'/?")

—0<j<dmeans 0 < j; <dy, 0 < jo < dy;
— & = d'dJ* (partial differentiation);

% 5 Joo aki aks \
— p®)(2) = plkrk2) (2, 29) = 072 852 p(21, 22)-

e The notation II; 3 y* — y* + Y 0<rer Chory” € Iy means that each y* in
I1; is mapped onto the element shown to the right of the symbol —, and this
element is also in I1,.

e The notation 7y : M D F — F C R'f means that M D F., F C Rj. and
mp: F— F.

Abbreviations

dQ4: dual quadrilateral 4-split

pQ4: primal quadrilateral 4-split

pT'4: primal triangular 4-split

LR(d): the Lane-Riesenfeld algorithm of degree d

LR(d x d): the Lane-Riesenfeld algorithm of bidegree d
LSS: Linear Subdivision plus Smoothing algorithm

4dpt x 4pt: tensor product of the four-point method with itself
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