FOREWORD BY GRADY BOOCH
#include “PayrollDomain/namespaces.h”
#include “Components/namespaces.h”
using namespace Components;
#include “Components/string.h”
#include “Components/u_set.h” '
I/
// Name
// Employee
class PayrollDomain::Employee

void SetMethod(PaymentMethod*);

void SetSchedule(PaymentSchedule*);

private:
double CalculatePay(const Date&) const

public:
void PayDay(const Date&);
void SetClassification(PaymentClassifica)

String itsName;

String itsAddress;

UnboundedSet<Affiliation*> itsAffiliatio

PaymentSchedule* itsSchedule; '
PaymentClassification* itsClassificatid

PaymentMethod* itsMethod;

e
-y a?

L L s
ey, 87V,

aOBERT C. MARTIN

Designing
Object-Oriented
C++ Applications

Using the Booch Method

Robert Cecil Martin

Object Mentor Associates

Prentice Hall, Englewood Cliffs, New Jersey 07 632

Martin, Robert C.

Designing object-oriented C++ applications using the Booch method
/ Robert C. Martin.

P- cm.
“An Alan R. Apt Book.”
Includes index.
ISBN 0-13-203837-4
1. Object-oriented programming. 2. C++ (Computer program
language) 3. Computer software--Development. I. Title.
QA76.64.M384 1995
005.13'3--dc20 94-47129
CIP

Publisher: Alan Apt

Production Editor: Mona Pompili
Cover Designer: Wendy Alling Judy
Copy Editor: Nick Murray
Production Coordinator: Lori Bulwin
Editorial Assistant: Shirley McGuire

© 1995 by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their effectiveness. The author
and publisher shall not be liable in any event for incidental or consequential damages in connection with, or
arising out of, the furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in
writing from the publisher.

Printed in the United States of America

109 8 7 6 5 4 3 21

ISBN 0-13-203837-4

PRENTICE-HALL INTERNATIONAL (UK) Limited. London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL CANADA, INC., Toronto

PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

SIMON & SCHUSTER ASIA PTE. LTD., Singapore

EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

For Ann Marie, Angela, Micah, Gina and Justin . . .

There is no greater treasure,
Nor any wealthier trove,
Than the company of my family,
And the comfort of their love.

Forward

By Grady Booch

Writing good software is indeed hard work. Moreover, the demand for quality software
continues to grow at an insane pace, fueled by the increased connectivity of distributed
computing systems and by greater user expectations for better visualization of and access
to information. The good news is that this makes for very interesting times for the profes-
sional software developer.

Another piece of good news is that, over the past decade or so, developments in
abstract data type theory, modularity, information modeling, and software process have
evolved to provide the professional developer a sound collection of practices that can be
used to attack this growing complexity. In many ways, these practices all come together in
the form of object-oriented technology. Most notably, a whole family of object-oriented
programming languages, such as C++ and Smalltalk, have emerged. In addition, a variety
of object-oriented analysis and design methods have been proposed that exploit these
object-oriented languages and help us model complex systems.

Yet, for the developer building real systems under very real schedules and limited
resources, all theory is irrelevant if it is not pragmatic. Reality is that languages such as
C++ and Smalltalk are not simple, and the applications to which we direct them are even
less simple. Just because you are using an object-oriented programming language does not
mean that all your projects will automatically be on schedule, under budget, and free of all
flaws.

Robert Martin is, first and foremost, a very pragmatic developer. I’ve had the honor to
work with him, and I've learned many things from his experience. This book speaks
clearly of that experience. In this work, you will understand how to apply C++ effectively.
You will also learn how to apply C++ in the context of the Booch method of object-ori-
ented analysis and design, a method that provides a unification of what we know as the
best practices today in object-oriented development.

Enjoy. I know I did in reading Robert’s manuscript, and I'm sure you’ll gain many
useful — and ultimately very practical — insights as well.

Grady Booch
Chief Scientist
Rational Software Corporation

Preface

Software design is hard, and we need all the help we can get.

— Bjarne Stroustrup, 1991

Software design is hard. We are now well into the fifth decade since John Von
Neumann conceived of the notion of a stored program. And although there have
been many advances in both the theory and practice of software engineering, in
comparison to our need, those advances have been precious and few. Object-
Oriented Design is one of those advances and is the subject of this book.

Let’s get one thing straight. Object-Oriented Design is not going to save the
software world—it’s not even going to come close. Applications designed using
OOD will still be difficult to estimate, will still be difficult to implement, will still
be difficult to maintain; and will still have bugs. Software design will still be
hard. What OOD will do is provide some useful new tools that you can employ
while designing software applications. Those tools, properly employed, will help
you to manage the complexity of designing, implementing and supporting a
software design. They will also help you to build your designs in terms of
reusable high level components.

OO0D is a complex topic. Many books have been written on the topic. Most
of them describe OOD in terms of its definitions, notations, and methods. This
book looks at the subject from the point of view of its practice. It tries to answer
the question: “How do I do OOD?” In trying to answer that question I will
employ two specific tools: The Booch Notation' for recording object-oriented
designs and the C++° programming language, a language that supports object-
oriented programming. We will explore how designs can be documented and
manipulated using Booch’s notation, and how they can be translated into C++.
During this exploration we will encounter the important principles of OOD and
investigate many ways in which they may be employed.

1. Grady Booch, Object-Oriented Design with Applications, (Copyright © 1991 by The Benjamin/
Cummings Publishing Company).
2. Bjarne Stroustrup, The C++ Programming Language, 2d. ed. (Addison Wesley, 1991).

vii

vii Preface
About This Book

Goals/Purpose

There are many books describing the various practices of object-oriented Design (OOD).
There are many other books describing the syntax and usage of C++. This book is a syn-
thesis of these two concepts. C++ is a rich and expressive language. Having C as a subset
may encourage software engineers to use it as “a better C.” While this is not altogether a
bad thing, it falls short of the potential benefits that a true object-oriented approach could
yield. This book presents the fundamental concepts of object-oriented design and shows
how to apply those concepts using C++. The approach is a practical, problem-solving pre-
sentation, written for those who are, or aspire to become, practitioners of object-oriented
design. Special attention is given to traps, pitfalls, and techniques in the application of
C++to OOD.

The Booch notation was chosen as the representational vehicle for OOD because of
its popularity, scalability, and notational elegance. The notation is explored in detail, and
is used to present the concepts of OOD. Where appropriate, the notation is translated into
corresponding C++ code. This provides the reader with a “Rosetta stone” describing the
linkage between the abstract OOD notation and the syntax of C++.

The practices of software engineering receive special attention, both in the creation of
the logical design, and the physical development environment. The methods for designing
and developing “big” software are discussed in detail. The goal is to provide the tools
needed to deal with large and complex projects.

Audience

This book is for software engineers—specifically for those who are interested in learning
how to design applications using object-oriented design techniques, and who want to
implement those applications in C++. It is assumed that the reader has a minimal working
knowledge of C++.

You should be prepared to work hard while reading this book. Quite a bit of detail is
presented, and you will benefit by studying it carefully. You can also browse the book to
gain a general notion of OOD, its representation in the Booch notation, and its ultimate
expression in C++. However, diligence in learning these techniques, as opposed to just
skimming them, will be well worth the effort.

Anatomy and Physiology of Design X

Anatomy and Physiology of Design

OOD is a complex discipline. It has its own vernacular, full of words, diagrams, princi-
ples, and concepts. No reasonable discussion about OOD can occur until you have learned
this vocabulary. Thus the first five chapters of this book are a step-by-step anatomy and
physiology of OOD. They present the concepts, definitions and principles of OOD by
exploring a number of relatively simple case studies. These case studies come from a vari-
ety of application domains, so that you can learn how to use OOD and C++ to solve
diverse sets of problems. Each case study works through a simple object-oriented design,
and often shows its implementation in C++.

The first five chapters also present the Booch notation as a vehicle for recording and
manipulating object-oriented design decisions. The Booch notation is “large™; it provides
many notational conventions for dealing with issues at all levels of the design. Each of the
first five chapters explores a different part of the notation and how it applies to OOD
and C++.

The next three chapters demonstrate how to apply the practices and principles of
OOD to a problem of significant size. They are an expedition through the analysis, high-
level design, low-level design, and physical design of a single complex application.

During this expedition, we thoroughly discuss the methods and rationale behind the
important design decisions. Also, many false starts and design errors are documented.
These errors are real, not contrived examples; I actually made these design errors while
writing this book. Furthermore the methods by which these errors are discovered and
solved are represented as faithfully as possible.

By reading through these chapters, you will follow the path that I took while doing
the design, including the dead ends, cul-de-sacs, and wrong turns. In my opinion, studying
design errors is just as educational (if not more educational) as studying “correct”
solutions.

Software Is Hard

The real crux of the “software crisis” (and the real reason why books like this are nec-
essary) is that software is hard. An application comprises myriads of intricate little details.
It is hard to weave all those details into a working program. Why should this be so? Why
is a concept as easy to grasp as a word processor, for example, so hideously complex to
implement? It is because humans are so good at abstracting away details.

By using the two words “word processor” I have described a broad class of highly
complex and intricate applications. I have also abstracted away all the details involved
with those applications. Software is hard because we are so good at envisioning abstract
applications without thinking about the details. Somewhere in our gut we know what we
want an application to do. We don’t have to describe it in detail, we just know. We know

X Preface

what a word processor does. It’s obvious. The concept is simple, and so we expect the task
of writing the software to be simple. Only when we enumerate the enormous amount of
details involved with making a real word processor do we begin to get a feeling for the
true complexity of the application. However, enumeration is not enough. Those details
must be organized, orchestrated, and intermixed with the details and limitations of the lan-
guage and machine. The result is a daunting task requiring far more time and effort than
generally expected. Software is hard because it takes an enormous effort to produce appli-
cations that can be so simply conceived of. Software is hard because it takes so much
effort to keep pace with users’ requirements and expectations. Software is hard because it
is so easy to dream up.

On the other hand, computer hardware is far outstripping the lay person’s expecta-
tions. It used to be that a computer would require hundreds of engineers to design and
build. Nowadays, a moderately skilled hardware engineer can tinker a far superior com-
puter together in the basement. Computer memory used to be hideously expensive, large,
and power-hungry. Now we buy gigabyte disks the size of pocket radios, and put them in
the multimegabyte, multimegahertz computers that we keep in our briefcases.

This creates a double-whammy for the software crisis. Not only are users’ expecta-
tions growing faster than our ability to produce workable applications, but the computers
themselves are improving faster still. Users reasonably expect that more powerful comput-
ers should have more powerful applications to run on them. Unfortunately the power of
the computer doesn’t provide much assistance in managing the complexity of a huge soft-
ware project.

To be sure, there have been some very powerful improvements in software technol-
ogy. But it is nothing near the sort of wild expansion that computer hardware has seen.
Suppose that two software engineers are separately trying to write the same program. One
is using 1990s software-development technology, and the other is using the tools and tech-
niques from the 1950s. Given that the application can be handled by the corresponding
hardware technologies, how much more efficient would the modern engineer be? Is she
30% more efficient? Twice as efficient? Could she be ten times as efficient? Whatever the
answer, it will in no way compare with the sheer orders of magnitude by which the effi-
ciency of hardware engineers has increased. One hardware engineer in the 1990s can
implement what took armies of engineers to implement in the 1950s.

Hardware engineers are so much more efficient today because they have developed a
technology that allows them to build upon each other’s work. Nobody has to redesign a
flip-flop.” Nobody has to build a flip-flop. You can buy them by the thousands in little
integrated circuits. Engineers don’t have to design op-amps, or adders, or CPUs, or any of
the other staples of electronic devices. They can just buy the building blocks and tie them
together using standard electronic engineering techniques. And every year the building
blocks become more powerful and more complex. Every year this encapsulated power and
complexity is made directly available for hardware engineers to bring to bear upon their

3. An electronic memory device capable of storing 1 bit of information.

OOD Can Make Software “Softer” Xi

designs. It is this encapsulation and mass production of complexity that has so magnified
the power of the hardware engineer.

No such revolution has yet taken place in the realm of software engineering. Oh, we
might not have to write sort functions anymore.* And maybe most of our I/O is taken
care of for us by an operating system. But nobody is out there selling “Integrated Applica-
tion Modules™ that software engineers can buy and hook together with the kind of effi-
ciency experienced by hardware engineers. As a group, software engineers are not
building upon each other’s work. We continue to reimplement different variations of the
same functions over and over again.

OOD Can Make Software ‘“‘Softer”

Software may be hard, but OOD can help to soften it a bit. OOD provides the tools and
techniques by which we can encapsulate a certain level of functionality and complexity.
Using OOD, we can create black-box software modules that hide a great deal of complex-
ity behind a simple interface. Software engineers can tie these black boxes together using
standard software techniques.

Booch calls these black boxes class categories. Class categories are comprised of
entities known as classes, which are bound together by class relationships. A great deal of
complexity can be buried in a class, while its interfaces can remain relatively simple. This
takes advantage of the fact that people are so good at abstracting away details. If we can
bury all the details away in some class, then we don’t have to think about them any more.
We can use the class as often as we like, and for as many applications as we see fit, but we
never have to consider the details buried inside it again. This is an enormously powerful
concept. Such classes allow us to wield great power at relatively low cost.

Class categories organize groups of classes into mechanisms that implement high-
level policies, independent of the details that they control. Such categories, designed for
one application, can be reused in many other applications that require the same kind of
policies.

By 1990 there were some class libraries for sale. These libraries provided basic, low-
level classes such as queues, linked-lists, sorted-lists, complex numbers, and so on. They
provided abstractions that software engineers could readily build upon and incorporate
into their own class categories. By 1992 there were some libraries of class categories for
sale that encapsulated the policies that managed particular graphic user interfaces. These
category libraries, also called “frameworks”, made it much simpler to design and imple-
ment applications that employed those GUIs. Again, these frameworks can be built upon
to ease the job of designing and building software.

Will more libraries of class categories appear on the market, with more and more pol-
icies and functionality and complexity buried within simple interfaces? Will it one day be
possible to buy a “Word Processor” framework, or a “Spreadsheet” framework? Will soft-

4. Although I’d be willing to bet that many of you have within the last year or so.

xii Preface

ware engineers be able to tie such wildly complex entities together with the same ease and
efficiency that hardware engineers currently tie CPUs, UARTSs, and RAMs together? That
would certainly be a worthy goal. It may be that OOD can move us closer to achieving it.

Acknowledgements

Question: How can I get you to read this section? Without the acknowledged individuals,
this work would not have been possible. These people deserve to be recognized, and so I
want you to read their names. But you won’t do that if I simply list their names, so I am
going to give you some incentive to get to know these people. Please read on.

I first became interested in object-oriented programming (OOP) in 1985. I read Adele
Goldberg’s excellent books on Smalltalk-80, and bought a Smalltalk compiler for my
Macintosh, which taught me much about OOP. At the same time, I attempted to imple-
ment pseudo object-oriented inheritance and message-dispatching mechanisms in C. This
turned out to be very difficult, and I eventually abandoned the idea, but not before I had
several stimulating conversations with a friend and associate named Jim Newkirk. We
spent many hours discussing object-oriented design while attempting to use the “inherit-
ance mechanisms” that I had invented for C.

In 1986 I got a copy of Bjarne Stroustrup’s first edition of The C++ Programming
Language. Its similarity in size and style to Kernighan and Ritchie’s wonderful The C
Programming Language was extremely compelling. I said to myself, “Oh, this must be
the next C.”

After reading this book, and becoming enthralled by the language, I found myself
leading a one-man abortive campaign to get my employer to purchase a C++ compiler.
But the cost, at that time, was high, and the interest among my co-workers was low, so |
was unable to achieve this goal. It was difficult to convince people even that strong typing
would be beneficial, let alone attempt to explain the odd appellation of object-oriented
programming.

It was not until 1989 that I was able to get my hands on a real C++ compiler. By that
time I had written thousands of lines of object-oriented code, but none in C++. I bought a
copy of Dewhurst and Stark’s Programming in C++ and I quickly began exploring the
language and getting used to its quirks and features. In this process, I am not even nearing
completion.

In 1990 I read Coad’s OOA, Booch’s Object-Oriented Design with Applications, and
Designing Object-Oriented Software by Wirfs-Brock, Wilkerson, and Wiener. 1 began
applying the techniques of OOD that I learned in these books to the applications I was
writing for my employer. I also adopted Booch’s notation as my prime mechanism for
recording design decisions. I was pleasantly surprised that the notation, odd as it may
seem at first glance, was actually quite easy to draw by hand and allowed me to record my
designs with a density that I had not experienced with other notational methods.

OOD Can Make Software “Softer” Xiii

In the middle of 1991, my co-worker, Bill Vogel, got a call from a recruiter looking
for object-oriented engineers. After some discussion with the agent on the other end of
the phone, he handed the phone over to me and said: “Uncle Bob, I think this is for you.”
That phone call eventually led me to leave my employer and begin working as a consultant
for Rational, where Grady Booch was employed as chief scientist.

At Rational I worked on a product called “Rose.” I was fortunate enough to work
with Grady on several projects during my months there. I was also fortunate to be work-
ing with a group of some of the most astounding engineers that I have ever met. The Rose
team was awesome in the sheer brain-power of its members. I learned a great deal from
all of them. There were, to mention a few, Paul Rogers, the cool-head; Bob Weissman, the
trouble-shooter; Paul Jasper, the sound-man; Dave Stevenson, the rocket scientist; and
Mike Higgs, the pragmatist.

While working at Rational, I conceived the idea for this book. I wrote drafts of the
first three chapters, and showed them to Grady. He was kind enough to read and review
them, and then to guide me into the publishing process.

Grady introduced me to Alan Apt of Prentice Hall, who is the editor of this book.
Alan is a diligent and enthusiastic editor. He recruited some of the industry’s top people to
review my work—names like Steve Buroff, Jim Coplien, Mike Vilot, and Stan Lippman.
Of Stan’s reviews [will say only that they caused me, at once, the most pain and profit.

Of course this was just the kick-off. Many other people reviewed my work. Brett
Schuchert, Bob Weissman, and Mike Higgs deserve special mention. To Jim Newkirk,
who became the sounding-board for many of my partially formed ideas, and who made
many contributions of his own, I would like to say a heartfelt thank you.

Writing a book takes a great deal of time, and for a man who is supporting a large
family, that time must be taken away from that family. This book could never even have
been conceived, let alone written, if not for the faithful and loving support provided to me
by my wonderful wife Ann Marie, and all my terrific kids: Angela, Micah, Gina, and Jus-
tin. Every man should be as lucky as I am.

The production of this book was an arduous task, and would have been beyond my
abilities were it not for the unfailing efforts of Jennifer Kohnke and Mona Pompili, Jim
Newkirk and Bhama Rao. The harder I worked, the harder they worked. Thanks.

Much of what appears in the pages to come has been significantly influenced by the
fluid and incredibly dynamic discussions that appear on the net. Among those “netters”
who have had a profound influence on my thinking are Jim Adcock, Steve Clamage, Jam-
shid Afshar, Mark Terribile, John Skaller, Scott Meyers, Marshall Cline, Paul Lucas, Red
Mitchell, and John Goodsen.

Finally, there are several people who deserve mention because they have influenced
my thinking concerning software over the last two decades. Of course if they were all
enumerated, the list would fill many dozens of pages. So I will constrain myself to men-
tion just these few: Dave Lasker, who helped a would-be consultant achieve his goals;
Ken Finder, who taught wisdom to a fool; Jerry Fitzpatrick, who believed the weakling
could defeat the giant; and Tim Conrad, who turned impossible dreams into a few week’s

joyous labor.

Contents

Forward v
Preface vii
About This Book viii
GOAIS/PUIPOSE ...ttt viii
AUGIEIICE .ottt e et e e e e e e e sne e e eeeaseeeseeennneennnnas viii
Anatomy and Physiology of Designccccoeeveriniiiiiiiininineicccnccee e ix
Software Is Hard ix
00D Can Make: SOftWATE “SOter” uu suwssvesssissrosmsnsunsssesenssssossnsssessivsssnenss sssvsssessnsss Xi
Acknowledgements xii
Contents xiv
Figures XXV
C++ Listings XXX

00

OOverview 1
Introduction 1
Part 1: Some Common Questions about OOD 2
What is object-oriented design?..........cceeeiririieiiinininiiis 2
Is OOD better than previous software-design disciplines? If so, why?.................... 3
Is OOD a revolution, or has it evolved from “older” design methods?.................... -+
How is OOD different from more traditional software methods?c.cccccccevenel5
Software is software. Isn’t OOD just a new face painted on an old canvas? 6
Will OOD solve all my design problems? ..o 6

Xiv

Contents
XV

What can I really expect from OOD?coovimoieeeeeeeeeeeeeeeeee oo 6
Is C++ a “true” object-oriented programming language?...............cooovveerererrennnn., 7
Why was the Booch notation chosen for this bOOK?...........cooverevoeeeeoeeo 7
Part 2: Tutorial 8
ODBJECES ...ttt 8
ADSEEACHON ¢vcssusssrvensyosssssnsssvesssnsns rissvess s sssiism s i sHsssos i sosnnemassenassasessssssmsuosesns
ABSIFACTION Of SHALEccuveiiiiiiiiiiiiie ettt e e e e
Abstraction of Behavior
Collaboration Among Objects
Polymorphism..........ccccceeennene.
Classes.....ccccouevueenennnn.
Specifying Stateccoceueeee
Instance Variables
Class Variables
Specifying BeNAVIOT......c.cuiiiiiiiieiecicicee ettt
INSTARCE:METROTS, < isvvxe5ssrinssammmmsssosmssimmisanovsivspsossvssive s oo iis s st sisssisavsbevasssts
ClASS METROMS ...ttt et as 18
Class RelationShiPscouiiiriiiiiiiiieie et s 18
The “Contains” Relationship
The "Uses™ RelationshiD .::s.ususscssssessgsossansssssasess sosvssossnsussissmasssssbessessgeuseissesssruis
The “Inheritance” Relationship
Multiple INRETITANCEc..ooovuuiaiiiieiiieiie e
ADSITACE CLASSES ...vveemerreemreresssmrmessassssrassnsonseansanensasssassbessisFssmesvsssssssssisssessssessssassnts 22
Summary 23
Exercises 24
1
Static and Dynamic Design 26
Introduction 27
Connecting Requirements to the Design 28
Static and Dynamic Models in OODcoooiiiiiniiiiiiies 28
A Bill-of-Materials Case Study, in CH+ccoooviiimiiniiiiinii 29
A C++ Example of a Static Modelccooeviinninninins 29
Containment by VAIUE ccccoveuevueriinuenieniiiiiiiiinieninnes 31
Containment by Reference
Inheritancecooceeveeennnnns
Containment with Cardinality ...
Polymorphic Containmentc.......
A C++ Example of a Dynamic Model

Tteration Between the MOAELScoeeeeeeeeeeeeeiiiiiiiiiiiiiiiiiiiiiiiei s

Xvi Contents

Why Is This Better Than Writing COAe?c..c.ooueoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeon 43

XRef: An Example of Object-Oriented Analysis and Design
XRef References: A Static MOdel...........oooiiioiieiviiieiiceceeeeeeeeeeeeeeeeeeeee s,
Dynamic Scenario: Printing the Cross-Reference Report
Rethinking the Static Model in Light of the Dynamic Requirements
Dynamic Scenario: Finding and Adding References.............c..cocccoveun...
Making the Parser Reusable

The XRef Applicationccccceeeennne...
Converting the XRef Design into C++
Summary of the: XRef EXAMPIe..c s sonsasssvssssissssins

The Mark IV Special Coffee Maker

Specification of the Mark IV Hardware Interface Functions...........c.ccceveninnnien.

Designing: the Mark IV SOftWare . ..v e sssnssisevarssissiossessmmsssnsessssmssssesssissssmas
The Control Model: A Finite State Machine for the Coffee Maker
Finding the ObJEctsoouuuuiiiiiiiiiiiiiiiiiiiiiiiciiiieeee et
Object-Oriented Analysis: Finding the Underlying AbStractionsccceceeeuee.. 66
Assigning Responsibilities to the ADSIFactionscccocoveveeiiiiiiiiniannnnn.
Reusing the Abstractions
CoffeeMaker Categoriescvvvvierieniinnnnnns

Implementation of the Mark IV Coffee MaKer..........ccoccooooiiiiiniiiiiiiniiiis
The Design and the Code Aren’t a Perfect MQtchccoccovveveveiiiniinineiieneeneeennn,

Summary
Exercises

Mark IV Coffee Maker Implementation

The Ul Category
The Warmer Category
The Sprayer Category

The CoffeeMaker Category sswissisivvsssvivesissvseriscivsnmmsvansensason
The MArkIV CALEGOTYcccovvviviiiiiiniiiiiniiisrisiisiiinsss s ssssssesaesssasesesssssnesinnns
2
Managing Complexity 106
Introduction 107
Managing vs. Reducing Complexity 107
Abstraction: “The Most Powerful Tool” 108

Product Costing Policy: Case Study. 109

Contents i

GIOUPINE ..ottt ettt et senee e ee e 109

The Open-Closed Principleccccouoviviuincuiseeeeesseieeisseeeeeeeeesseseasesaeeens 109

Using Grouping Strategies 10 Close a FURCHONcccuveeeevueeeeeieeeeeceeeeeennn. 115

Hiding (Restricting Visibility)cccccoviririiirinieieieeeeeciee e 119

The Problem of Too Much ViSiDilityccccocvuiieiiiuieeeeiiieeeeiieeeeeineeeeeesneeeens 120

Hiding and CLOSUTec.c..cooviivouiiiiiieeiieeiieesieeeaeeesiaeesaeeeae e eaaeseaseeeaee e 121
ADSraction and HIAINGc.cooeueeeeueeeiieeeieeeiee e e eae e 121
Completing the Product / Policy Design.........ccccoevirireniciniinieneseieeeecee 123

The Cost of Complexity MANGGEMENEcccueeeeueeeeeeeeeeeeereeeeseeeseeeeaeesenaeens 127

The Efficiency of the Diagrams: . wssissossvissmisvivissssonsmmisissss s issaiassm 128

The Product COSHNG COAEceeeueeeeeeieeeeeeieiseesiaseeeeaneesesassaeaeeessseeeaasseeaanes 128
Managing Complexity with Abstraction 137
POlyMOrPhiSIM ...c.ccuiiiiiiiiiiiiciiciei i 137
Total Typed POLYMOTIPRISILccouueevuiiiiiineniiiiiiiiieeciie e as e 137

Partial, Untyped PoIYMOTDRISM wsvisvasswsssssossssvosimsivesssssssssnsseimsonsssassnissossssssngass 138

ISA and the Liskov Substitution Principle...........cccccoiviiiiniininiinnininciinininns 139
Mathematical vs. Polymorphic Relationshipscccceveeevueeiiinnneeeeiieeniieenns 140
Factoring Instead of DeriVingcccuerssisseiosussesnsrensasasssssansassassasssessonssassessonsasoras 142
Managing Complexity with Aggregationc.cocovveeninnininniinniincee 145
Restricting Visibility by the use of Friendship ... 148
Case Study: The Design of a Container Library 149
AnoNyMOUS CONLAINETS.........ccoiiriiiririereereesists sttt 160
Summary of the Container Case Studyococeueieirireiiiniiiie 163
Summary 164
Exercises 165
Container Class Listings 166

Analysis and Design 189
Introduction 189
Case Study: A Batch Payroll Application 191
SPECIFICALION w...vevvenrerriisssesssesis st 191
ANalysis by NOUN LASESouruieiiriinrinniniissssimsisisss s 192
ANAlysis by USE-CASES......ouvuimririiicmeiisiini st e 194
Adding EMPIOYEES.......coucumrimrinrisnississesseseissassisssassassssss sttt s 194

We Are Already Making Design DeCISIONScoceurmniimiinisisininiiiinnssnissnenes 196

Deleting EMPIOYEEScourvurumivsriseisirserseissiinsieis s s 196

POStiNg Time CardS..........ccurerriimesssessessssssssisssmsss st s s 197

xvin Contents

PoSting Sales RECEIPLScueuriiveiiiieiieiice oo 197
Posting a Union Service Chargeco.vueveveeieeececeeeeeeeeeeeeeee oo 198
Changing Employee Detailscccouoviiiiiiioiieiiieeeeeeeeeeeeeeeeee e 199
PAYOAY ccucensmmmsmmmmssmnssimasmnsisissimsmenrsrssrammressmamsssaren o ssmssmss s osossoas s esesss e eesenss 200
Reflection: What Have We Learned?coooooiviuiviiiiiieeiceccceeeeeeeen 201
The Viability of Real-World Models...........c.coovoveveviviiiiiiieeeeeeeeeeeenn 203
Finding the Underlying ADBStractions............ccoceveeviuieieiiuiiieniceeeeceeeeeeeeeeeeeee 204
The Schedule AbSHACHON . R i amemssens 204
Payment MEthodS:; «ussassrmaimimmmsmmsiismnimreemssrsssesssamsossassosersssaassssesonssoss 206
AFTIHALIONS ...ttt 206
TTANSACTIONS ...ttt ettt ettt et eae et e s eaeeae e e e s 206
Adding EMPIOYEES....c.eviiiriiiirieiiiiiee ettt 208
Deleting EMPlOYEES s uuimssossssemsasssenssivsonsssssssssssassiessomssossssvasiasssssmisssonvessrsesvissass 208
Time Cards, Sales Receipts, and Service Charges..........ccccvevvevvereveeierienieseeneene. 209
Changing EMPIOYEEScc.oiiiiiiiiiiiiiiieieete ettt 214
Paying EMPIOYEES....cc.iiiiiiiiiiiiiiiiet e 220
Main Pro@ram ... 222
Application FramMeWORkKqassssssumpsmsammsonisssmsssnsmsssssssssssssenssssssmsssuisssnsssssssss 223
The: Database: swesrrsmssssarmssisemsss i sarms s sess s NS v s e e s ssons 224
Summary of Payroll Design 225
High-Level Closure Using Categories 226
C1aSS CAEZOTIES . .vevererenieieieteie ettt ettt st ns 226
Category Structure and NOTQHONcccceeueiriuiiiiiiiiiieiiee et 228
Circularity in the Category SIFUCTUTEccueeverieiiuiiiiiieeiieeiieeaiie s 229
Resolving Issues of CirCUlaritycoecueeeeeceeriveniiiiiniieiie e 230

The Category Structure Is Always FIexibleccccooiiiniiiiiininiiiniinsiinnns 231
Cohesion, Closure, and Reusability 231
The Cohesion of Common CIOSUTE.........ccccceciimiiniiniisiininiirnenesasssssssssssessesesaes 232
Creating a Hierarchy of Closed Categoriesccooivieiiiniinniininciiiices 233
The Main Sequence: Plotting Stability vs. Generalityccoooviiiiniiiiinnnns 235
The Abstraction vs. Stability Characteristics of Traditional Software Methods 236

The Impact of Abstract Classes on the Main SeqUENCeccoeeveeeniininincnncns 238
Categories That Deviate from the Main SeGUENCecoceeieieniinieniineneens 238

The Category Is the Granule of REUSE.........covevveerrinieiiiniiiiiictceceene 239
Cohesion of Policy/and FUNCHON c.sssessssssssssssonsevsmmsmmsasenmessyassasarsssasssssonossosmmasases 240
Reflections on CoNESION s smsssissmevsimssiss s sssssmasiysissssssrssvessesoasrsoss 241
Reflections Upon the Payroll Applicationcccevieiinieiinniiinniic 241
Coupling and Encapsulationcocooiiiiiiiiiies 243
Afferent and Efferent COUPIINGccovverieumieiimiiiniiiniiciiss 243
Controlling Coupling with ERcapsulationccoooviiiniiciiniiiiiiniininnnns 244
Metrics 246

Applying the Metrics to the Payroll AppliCation..........cccvvimniiiniiiisiiccienes 247

