Digital System

Designs and Practices

Cand FPGAS g HD

DIGITAL SYSTEM

DESIGNS AND PRACTICES
Using Verilog HDL and FPGAs

- -
Ming-Bo Lin

Department of Electronic Engineering

National Taiwan University of Science and Technology

Taipei, Taiwan

John Wiley & Sons (Asia) Pte Ltd

Copyright © 2008 John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, #02-01,
Singapore 129809

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
expressly permitted by law, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be
addressed to the Publisher, John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, #02-01, Singapore 129809, tel:
65-64632400, fax: 65-64646912, email: enquiry @wiley.com.sg

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The Publisher is not associated with any product or vendor mentioned in this book. All
trademarks referred to in the text of this publication are the property of their respective owners.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be sought.

Appendix A is reprinted with permission from IEEE Std 1364-2001, (Revision of IEEE Std 1364-1995). IEEE
Standard Verilog® Hardware Description Language. Copyright 2001, by IEEE. The IEEE disclaims any
responsibility or liability resulting from the placement and use in the described manner.

Other Wiley Editorial Offices

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

John Wiley & Sons Inc.. 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH. Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be

available in electronic books.

Library of Congress Cataloging-in-Publication Data

Lin, Ming-Bo.

Digital system designs and practices: using Verilog HDL and FPGAs / Ming-Bo Lin.
p.cm.

Includes bibliographical references and index.

ISBN 978-0-470-82323-1 (cloth)

1. Digital electronics. 2. Field programmable gate arrays. 3. Verilog (Computer hardware description
language) I. Title.

TK7868.D5L535 2008

621.381-dc22 2008002506

ISBN 978-0-470-82323-1 (HB)

Typeset in 10.5/12pt Times by Thomson Digital, Noida, India.

Printed and bound in Singapore by Markono Print Media Pte Ltd. Singapore.

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two
trees are planted for each one used for paper production.

DIGITAL SYSTEM
DESIGNS AND PRACTICES
Using Verilog HDL and FPGAs

To Alfred, Fanny, Alice and Frank
and in memory of my parents

PREFACE

With the advance of the semiconductor and communication industries, the use of
system-on-a-chip (SoC) has become an essential technique to decrease product costs.
It has become increasingly important for electrical engineers to develop a good under-
standing of the key stages of hardware description language (HDL) design flow based
on cell-based libraries or field-programmable gate array (FPGA) devices. This book
addresses the need for teaching such a topic based on Verilog HDL and FPGAs.

The objective of this book, Digital System Designs and Practices: Using Verilog
HDL and FPGAs, is intended to be useful both as a text for students and as a reference
book for practicing engineers or a self-study book for readers. For class use, each
chapter includes many worked problems and review questions for helping readers test
their understanding of the context. In addition, throughout the book, an abundance of
examples are provided for helping readers realize the basic features of Verilog HDL
and grasp the essentials of digital system designs as well.

The contents of this book stem largely from the course FPGA System Designs and
Practices, given at our campus over the past few years. This course is an ‘undergraduate-
elective’ and first-year graduate course. This book is structured so that it can be used as
a sequence of courses, such as Hardware Description Language, FPGA System Designs
and Practices, Digital System Designs, Advanced Digital System Designs, and others.

CONTENTS OF THIS BOOK

The contents of this book can be roughly divided into four parts. The first part includes
Chapters 1 to 7 and introduces the basic features and capabilities of Verilog HDL. This
part can also be used as a reference for Verilog HDL. The second part covers Chapters 8
to 10 and contains basic combinational and sequential modules. In addition, the various
options for implementing a digital system are discussed in detail. The third part consists
of Chapters 11 to 13 and examines the three closely related topics: design, synthesis
and verification. The last part considers the register-transfer level (RTL) and system
level design examples and the techniques of testing and testable design. This part is
composed of Chapters 14 to 16.

Chapter 1 introduces the features and capabilities of Verilog HDL and gives
a tutorial example to illustrate how to use it to model a design at various levels of
abstraction and in various modeling styles. In addition, we also demonstrate the use of
Verilog HDL to verify a design after the description of a design is completed.

Chapter 2 deals with how to model a design in structural style. In this style, a
module is described as a set of interconnected components, which include modules,
user-defined primitives (UDPs), gate primitives and switch primitives. In this chapter,

XX

PREFACE

we introduce the structural modeling at the gate and switch levels. The UDPs and
modules are dealt with separately in Chapters 5 and 6.

Chapter 3 describes the essentials of dataflow modeling style. In this modeling
style, the most basic statement is the continuous assignment, which consists of operators
and operands in turn. The continuous assignment continuously drives a value onto a
net and is usually used to model a combinational logic.

Chapter 4 is concerned with the behavioral modeling style, which provides users
with the capability of modeling a design in a way like that of most high-level program-
ming languages. In this modeling style, the most common statements include procedural
assignments, selection statements and iterative (loop) statements. In addition, timing
controls are also dealt with in detail.

Chapter 5 describes three additional behavioral ways provided by Verilog HDL
which are widely used to model designs. These include tasks, functions and user-defined
primitives (UDPs). Tasks and functions provide the ability to re-use the same piece of
code from many places in a design and UDPs provide a means to model a design with a
truth table. In addition, the predefined system tasks and functions are introduced. These
system tasks and functions are useful when modeling, abstractly, a design in behavioral
style or writing test benches for designs.

Chapter 6 discusses three closely related issues of hierarchical structural mod-
eling. These include instantiations, generate statements and configurations. The
instantiation is the mechanism through which the hierarchical structure is formed by
modules being embedded into other modules. The generate statements can condi-
tionally generate declarations and instantiations into a design. By using configurations,
we may specify a new set of target libraries so as to change the mapping of a design
without having to change the source description.

Chapter 7 deals with the additional features of Verilog HDL. These features
include block constructs, procedural continuous assignments, specify blocks, timing
checks and compiler directives.

Chapters 8 and 9 examine some basic combinational and sequential modules that
are often used as basic building blocks to construct a complex design. In particular,
these modules are the basic building blocks of a datapath when using the datapath and
controller approach in a complex design.

Chapter 8 is concerned with the most commonly used combinational logic mod-
ules, which include encoders and decoders, multiplexers and demultiplexers, and mag-
nitude comparators. In addition, a multiplexing-driven seven-segment light-emitting
diode (LED) display system which combines the use of a decoder, as well as a multi-
plexer, is discussed in detail.

Chapter 9 examines several basic sequential modules that are widely used in
digital systems. These include flip-flops, synchronizers, a switch-debouncing circuit,
registers, data registers, register files, shift registers, counters (binary, BCD, Johnson),
CRC generators and detectors, clock generators and pulse generators, as well as timing
generators.

Chapter 10 describes various design options of digital systems. These options
include application-specific integrated circuits (ASICs) and field-programmable de-
vices. ASICs are devices that must be fabricated in IC foundries and can be designed
with one of the following: full-custom, cell-based and gate-array-based approaches.

PREFACE XXiii

Field-programmable devices are the ones that can be personalized in laboratories
and include programmable logic devices (PLDs), complex PLDs (CPLDs) and field-
programmable gate arrays (FPGAs). In addition, the issues of interfacing two logic
modules or devices with different logic levels and power-supply voltages are also dealt
with in detail in this chapter.

The next three chapters consider three closely related issues: design, synthesis
and verification. Chapter 11 introduces two useful techniques by which a system can
be designed. These techniques include the finite-state machine (FSM) and register-
transfer level (RTL) design approaches. The former may be described by using a state
diagram or an algorithmic state machine (ASM) chart; the latter may be described
by an ASM chart or by using the datapath and controller (DP+CU) paradigm. For a
simple system, a three-step paradigm introduced in the chapter may be used to derive
the datapath and controller of a design from its ASM chart. For complex systems,
their datapaths and controllers are often derived from specifications in a state-of-the-art
manner. An example of displaying four-digit data on a commercial dot-matrix liquid-
crystal display (LCD) module is used to illustrate this approach. In this chapter, we
also emphasize the concept that a hardware algorithm can usually be realized by using
either a multiple-cycle or a single-cycle structure. The choice is based on the tradeoff
among area (hardware cost), performance (operating frequency or propagation delay)
and power consumption.

Chapter 12 is concerned with the principles of logic synthesis and the general
architecture of synthesis tools. The function of logic synthesis is to transform an RTL
representation into gate-level netlists. In order to make good use of synthesis tools,
we need to provide the design environment and design constraints along with an RTL
code and technology library. Moreover, we give some guidelines about how to write a
good Verilog HDL code such that it can be accepted by most logic synthesis tools and
can achieve the best compile times and synthesis results. These guidelines also include
clock signals, reset signals and how to partition a design.

Verification is a necessary process that makes sure a design can meet its specifi-
cations both in function and timing. Chapter 13 deals with this issue in more detail and
gives a comprehensive example based on FPGA design flow to illustrate how to enter,
synthesize, implement and configure the underlying FPGA device of a design. Along
with the design flow, static timing analyses are also given and explained. In addition,
design verification through dynamic timing simulations, incorporating the delays of
logic elements and interconnect, is introduced.

The next two chapters are concerned with more complex modules. Chapter 14
examines many frequently used arithmetic modules, including addition, multiplication,
division, ALU, shift and two digital-signal processing (DSP) filters as well. Along with
these arithmetic operations and their algorithms, we also re-emphasize the concept
that a hardware algorithm can often be realized by using either a multiple-cycle or a
single-cycle structure.

Chapter 15 describes the design of a small pC system, which is the most complex
design example in the book. This system includes a general-purpose input and output
(GPIO), timers and a universal asynchronous receiver and transmitter (UART) being
connected by a system bus composed of an address bus and a data bus, as well as a
control bus. The 16-bit CPU provides 27 instructions and 7 addressing modes.

XXiV PREFACE

The final chapter is concerned with the topic of testability and testable design.
Testing is the only way to ensure that a system or a circuit may function properly. The
goal of testing is to find any existing faults in a system or a circuit. In this chapter,
we examine fault models, test vector generations, testable circuit design or design for
testability. In addition, system-level testing, such as SRAM, a core-based system and
system-on-a-chip (SoC), are also briefly dealt with.

Appendix A contains a complete syntax reference of Verilog HDL, including the
keywords and formal definition of the Verilog-2001 standard in Backus-Naur Form
(BNF).

SUPPLEMENTS

Two important and useful supplements are available for this book at the following
URL: www.wiley.com/go/mblin. The first is student supplements, including source files
of Verilog HDL examples in the book and the pdf files of lecture notes. The second is
the instructor’s supplements, containing figures, a solution manual and lecture notes in
power-point files, in addition to the student supplements.

STUDENT PROJECTS

Many end-of-chapter problems may be assigned as student projects, in particular, the
problems of Chapters 11, 14 and 15. Of course, many other chapters may also contain
problems that may be used for the same purpose.

ACKNOWLEDGMENTS

Most material of this book has been taken from the course ET5009 offered at the
National Taiwan University of Science and Technology over the past few years. My
thanks go to the students of this course, who suffered through many of the experimental
class offerings based on the draft of this book. Valuable comments from the participants
of the course have helped in evolving the contents of this book and are greatly appre-
ciated. Thanks to my mentor, Ben Chen, who is also a cofounder of the Chuan Hwa
Book Company, who brought me into this colorful digital world about thirty years ago.
In addition, he has also kindly allowed me to freely use figures, tables and even parts
of material from my earlier Chinese Books, published by the Chuan Hwa Book Com-
pany, in this current book. Without this permission, it would have needed much more
time to prepare the manuscript of this book. Finally but not least, I would like to thank
my children, Alice and Frank, and my wife, Fanny, for their patience in enduring my
absence from them during the writing of this book. I am also grateful to the publisher’s
staff for their support, encouragement and willingness to give prompt assistance during
this book project.

Ming-Bo Lin
Taipei, Taiwan

CONTENTS

PREFACE

CHAPTER 1 INTRODUCTION

xxi

1.1 Introduction
1.1.1 Popularity of Verilog HDL

1.1.2 Simple Examples of Verilog HDL 2
1.1.3 HDL-Based Design 4
1.2 Introduction to Verilog 6
1.2.1 Module Concept 6
1.2.2 Lexical Conventions 7
1.2.3 Value Set 8
1.2.4 Constants 8
1.2.5 Data Types 10
1.2.6 Primitives 1
1.2.7 Attributes 12
1.3 Module Modeling Styles 13
1.3.1 Modules 13
1.3.2 Structural Modeling 16
1.3.3 Dataflow Modeling 17
1.3.4 Behavioral Modeling 19
1.3.5 Mixed-Style Modeling 20
1.4 Simulation 21
1.4.1 Basic Simulation Constructs 21
1.4.2 Related Compiler Directive and System Tasks 22
1.4.3 A Tutorial Example 24
Summary 27
References 28
Problems 28
CHAPTER 2 STRUCTURAL MODELING 31
2.1 Gate-Level Modeling 31

2.1.1 Gate Primitives

32

viii

CONTENTS

2.1.2 Tristate Buffers 39
2.1.3 Wired Logic a1
2.2 Gate Delays a4
2.2.1 Delay Models a4
2.2.2 Delay Specifications 46
2.3 Hazards a7
2.3.1 Static Hazards a8
2.3.2 Dynamic Hazards 50
2.4 Switch-Level Modeling 52
2.4.1 MOS Switches 52
2.4.2 CMOS Switch 56
2.4.3 Bidirectional Switches 58
2.4.4 Delay Specifications 59
2.4.5 Signal Strength 60
2.4.6 trireg Net 62
Summary 65
References 66
Problems 66
CHAPTER 3 DATAFLOW MODELING 69
3.1 Dataflow Modeling 69
3.1.1 Continuous Assignment 69
3.1.2 Expressions 70
3.1.3 Delays 72
3.2 Operands 74
3.2.1 Constants 74
3.2.2 Data Types 78
3.2.3 Bit-Select and Part-Select 80
3.2.4 Array and Memory Elements 82
3.3 Operators 84
3.3.1 Bit-wise Operators 84
3.3.2 Arithmetic Operators 86
3.3.3 Concatenation and Replication Operators 89
3.3.4 Reduction Operators 91
3.3.5 Logical Operators 93
3.3.6 Relational Operators 93
3.3.7 Equality Operators 94

CONTENTS iX

3.3.8 Shift Operators 96
3.3.9 Conditional Operator 97
Summary 99
References 100
Problems 100
CHAPTER 4 BEHAVIORAL MODELING 103
4.1 Procedural Constructs 103
4.1.1 initial Block 104
4.1.2 always Block 106
4.2 Procedural Assignments 107
4.2.1 Procedural Assignments 107
4.2.2 Blocking Assignments 108
4.2.3 Nonblocking Assignments 110
4.2.4 Blocking versus Nonblocking Assignments 113

4.3 Timing Control 17
4.3.1 Delay Timing Control 17
4.3.2 Event Timing Control 118
4.4 Selection Statements 125
44.1 if-else Statement 125
4.4.2 case Statement 127
4.4.3 casex and casez Statements 132

4.5 Iterative (Loop) Statements 133
4.5.1 while Loop Statement 133
4.5.2 for Loop Statement 135
4.5.3 repeat Loop Statement 137
4.5.4 forever Loop Statement 138
Summary 139
References 140
Problems 141
CHAPTERS5 TASKS, FUNCTIONS AND UDPs 145
5.1 Tasks 145
5.1.1 Task Definition and Call 145
5.1.2 Types of Tasks 149

5.2 Functions 152

5.2.1 Function Definition and Call

152

X CONTENTS

5.2.2 Types of Functions 154
5.2.3 Constant Functions 155
5.2.4 Sharing Tasks and Functions 156
5.3 System Tasks and Functions 158
5.3.1 Simulation-Related System Tasks 159
5.3.2 File I/O System Tasks 163
5.3.3 String Formatting System Tasks 169
5.3.4 Conversion System Functions 171
5.3.5 Probability Distribution System Functions 172
5.3.6 Stochastic Analysis System Tasks 173
5.3.7 Command Line Arguments 174
5.4 User-Defined Primitives 176
5.4.1 UDP Basics 176
5.4.2 Combinational UDP 178
5.4.3 Sequential UDP 180
Summary 185
References 186
Problems 186
CHAPTER 6 HIERARCHICAL STRUCTURAL MODELING 189
6.1 Module 189
6.1.1 Module Definition 190
6.1.2 Parameters 192
6.1.3 Module Instantiation 194
6.1.4 Module Parameter Values 196
6.1.5 Hierarchical Names 200
6.2 generate Statement 201
6.2.1 Generate-Loop Statement 202
6.2.2 Generate-Conditional Statement 204
6.2.3 Generate-Case Statement 210
6.3 Configurations 212
6.3.1 Library 212
6.3.2 Basic Configuration Elements 213
Summary 221
References 222
Problems 222

CONTENTS Xi
CHAPTER 7 ADVANCED MODELING TECHNIQUES 225
7.1 Sequential and Parallel Blocks 225
7.1.1 Sequential Blocks 226
7.1.2 Parallel Blocks 227
7.1.3 Special Features of Blocks 228
7.1.4 The disable Statement 230
7.2 Procedural Continuous Assignments 231
7.2.1 assign and deassign Statements 232
7.2.2 force and release Statements 233
7.3 Delay Models and Timing Checks 235
7.3.1 Delay Models 235
7.3.2 Specify Blocks 238
7.3.3 Timing Checks 247
7.4 Compiler Directives 259
7.4.1 *define and ‘undef Compiler Directives 260
7.4.2 include Compiler Directive 261
743 ‘ifdef, ‘else, ‘elsif, ‘endif and ‘ifndef Compiler
Directives 261
7.4.4 timescale Compiler Directive 262
7.4.5 Miscellaneous Compiler Directives 263
Summary 265
References 266
Problems 266
CHAPTER 8 COMBINATIONAL LOGIC MODULES 273
8.1 Decoders 273
8.1.1 Decoders 274
8.1.2 Expansion of Decoders 277
8.2 Encoders 278
8.2.1 Encoders 278
8.2.2 Priority Encoders 280
8.3 Multiplexers 283
8.3.1 Multiplexers 283
8.3.2 Expansion of Multiplexers 287
8.4 Demultiplexers 288
8.4.1 Demultiplexers 288
8.4.2 Expansion of Demultiplexers 292

Xii

CONTENTS

8.5 Magnitude Comparators 293
8.5.1 Magnitude Comparators 294
8.5.2 Cascadable Magnitude Comparators 294

8.6 A Case Study: Seven-Segment LED Display 296
8.6.1 Seven-Segment LED Display 296
8.6.2 Multiplexing-Driven Seven-Segment LED Display 299

Summary 303

References 304

Problems 304

CHAPTER9 SEQUENTIAL LOGIC MODULES 307

9.1 Flip-Flops 307
9.1.1 Flip-Flops 308
9.1.2 Metastable State 312
9.1.3 Synchronizers 314
9.1.4 A Switch-Debouncing Circuit 319

9.2 Memory Elements 321
9.2.1 Registers 321
9.2.2 Register Files 323
9.2.3 Synchronous RAM 324
9.2.4 Asynchronous RAM 325

9.3 Shift Registers 332
9.3.1 Shift Registers 332
9.3.2 Universal Shift Registers 334

9.4 Counters 338
9.4.1 Ripple Counters 338
9.4.2 Synchronous Counters 340

9.5 Sequence Generators 345
9.5.1 PR-Sequence Generators 345
9.5.2 CRC Generator/Detectors 349
9.5.3 Ring Counters 353
9.5.4 Johnson Counters 354

9.6 Timing Generators 356
9.6.1 Multiphase Clock Generators 356
9.6.2 Digital Monostable Circuits 358

Summary 360

References 361

Problems 362

CONTENTS

xXiii

CHAPTER 10 DESIGN OPTIONS OF DIGITAL SYSTEMS 367
10.1 Design Options of Digital Systems 368
10.1.1 Hierarchical System Design 368
10.1.2 Design Options of Digital Systems 370
10.1.3 ASIC Designs 373
10.1.4 Design with Field-Programmable Devices 378
10.2 PLD Modeling 382
10.2.1 ROM 383
10.2.2 PLA 385
10.2.3 PAL 387
10.2.4 PLA Modeling 391
10.3 CPLD 396
10.3.1 XC9500 Family 397
10.3.2 MAX7000 Family 401
10.4 FPGA 406
10.4.1 Xilinx FPGA Devices 406
10.4.2 Altera FPGA Devices 413
10.5 Practical Issues 418
10.5.1 I/O Standards a19
10.5.2 Voltage Tolerance 420
Summary 422
References 423
Problems 424
CHAPTER 11 SYSTEM DESIGN METHODOLOGY 427
11.1 Finite-State Machine 427
11.1.1 Types of Sequential Circuits 428
11.1.2 FSM Modeling Styles 429
11.1.3 Implicit versus Explicit FSM 435
11.2 RTL Design 438
11.2.1 ASM Chart 438
11.2.2 ASM Modeling Styles aa1
11.2.3 Datapath and Controller Design 449
11.3 RTL Implementation Options 464
11.3.1 Single-Cycle Structure 464
11.3.2 Multiple-Cycle Structure 465
11.3.3 Pipeline Structure 466
11.3.4 FSM versus Iterative Logic 469

XiV CONTENTS

11.4 A Case Study: Liquid-Crystal Displays 477
11.4.1 Principles of LCDs 477
11.4.2 Commercial Dot-Matrix LCD Modules 479
11.4.3 Datapath Design 484
11.4.4 Controller Design 487

Summary 495

References 496

Problems 497

CHAPTER 12 SYNTHESIS 501

12.1 Design Flow of ASICs and FPGA-Based Systems 501
12.1.1 The General Design Flow 502
12.1.2 Timing-Driven Placement 505

12.2 Design Environment and Constraints 508
12.2.1 Design Environment 509
12.2.2 Design Constraints 510
12.2.3 Optimization 511

12.3 Logic Synthesis 512
12.3.1 Architecture of Logic Synthesizers 512
12.3.2 Two-Level Logic Synthesis 515
12.3.3 Multilevel Logic Synthesis 517
12.3.4 Technology-Dependent Synthesis 522

12.4 Language Structure Synthesis 524
12.4.1 Synthesis of Assignment Statements 524
12.4.2 Synthesis of Selection Statements 525
12.4.3 Delay Values 527
12.4.4 Synthesis of Positive and Negative Signals 529
12.4.5 Synthesis of Loop Statements 530
12.4.6 Memory and Register Files 533

12.5 Coding Guidelines 533
12.5.1 Guidelines for Clocks 534
12.5.2 Guidelines for Resets 535
12.5.3 Partitioning for Synthesis 536

Summary 538

References 539

Problems 539

