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PREFACE

With the advance of the semiconductor and communication industries, the use of
system-on-a-chip (SoC) has become an essential technique to decrease product costs.
It has become increasingly important for electrical engineers to develop a good under-
standing of the key stages of hardware description language (HDL) design flow based
on cell-based libraries or field-programmable gate array (FPGA) devices. This book
addresses the need for teaching such a topic based on Verilog HDL and FPGAs.

The objective of this book, Digital System Designs and Practices: Using Verilog
HDL and FPGAs, is intended to be useful both as a text for students and as a reference
book for practicing engineers or a self-study book for readers. For class use, each
chapter includes many worked problems and review questions for helping readers test
their understanding of the context. In addition, throughout the book, an abundance of
examples are provided for helping readers realize the basic features of Verilog HDL
and grasp the essentials of digital system designs as well.

The contents of this book stem largely from the course FPGA System Designs and
Practices, given at our campus over the past few years. This course is an ‘undergraduate-
elective’ and first-year graduate course. This book is structured so that it can be used as
a sequence of courses, such as Hardware Description Language, FPGA System Designs
and Practices, Digital System Designs, Advanced Digital System Designs, and others.

CONTENTS OF THIS BOOK

The contents of this book can be roughly divided into four parts. The first part includes
Chapters 1 to 7 and introduces the basic features and capabilities of Verilog HDL. This
part can also be used as a reference for Verilog HDL. The second part covers Chapters 8
to 10 and contains basic combinational and sequential modules. In addition, the various
options for implementing a digital system are discussed in detail. The third part consists
of Chapters 11 to 13 and examines the three closely related topics: design, synthesis
and verification. The last part considers the register-transfer level (RTL) and system
level design examples and the techniques of testing and testable design. This part is
composed of Chapters 14 to 16.

Chapter 1 introduces the features and capabilities of Verilog HDL and gives
a tutorial example to illustrate how to use it to model a design at various levels of
abstraction and in various modeling styles. In addition, we also demonstrate the use of
Verilog HDL to verify a design after the description of a design is completed.

Chapter 2 deals with how to model a design in structural style. In this style, a
module is described as a set of interconnected components, which include modules,
user-defined primitives (UDPs), gate primitives and switch primitives. In this chapter,
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we introduce the structural modeling at the gate and switch levels. The UDPs and
modules are dealt with separately in Chapters 5 and 6.

Chapter 3 describes the essentials of dataflow modeling style. In this modeling
style, the most basic statement is the continuous assignment, which consists of operators
and operands in turn. The continuous assignment continuously drives a value onto a
net and is usually used to model a combinational logic.

Chapter 4 is concerned with the behavioral modeling style, which provides users
with the capability of modeling a design in a way like that of most high-level program-
ming languages. In this modeling style, the most common statements include procedural
assignments, selection statements and iterative (loop) statements. In addition, timing
controls are also dealt with in detail.

Chapter 5 describes three additional behavioral ways provided by Verilog HDL
which are widely used to model designs. These include tasks, functions and user-defined
primitives (UDPs). Tasks and functions provide the ability to re-use the same piece of
code from many places in a design and UDPs provide a means to model a design with a
truth table. In addition, the predefined system tasks and functions are introduced. These
system tasks and functions are useful when modeling, abstractly, a design in behavioral
style or writing test benches for designs.

Chapter 6 discusses three closely related issues of hierarchical structural mod-
eling. These include instantiations, generate statements and configurations. The
instantiation is the mechanism through which the hierarchical structure is formed by
modules being embedded into other modules. The generate statements can condi-
tionally generate declarations and instantiations into a design. By using configurations,
we may specify a new set of target libraries so as to change the mapping of a design
without having to change the source description.

Chapter 7 deals with the additional features of Verilog HDL. These features
include block constructs, procedural continuous assignments, specify blocks, timing
checks and compiler directives.

Chapters 8 and 9 examine some basic combinational and sequential modules that
are often used as basic building blocks to construct a complex design. In particular,
these modules are the basic building blocks of a datapath when using the datapath and
controller approach in a complex design.

Chapter 8 is concerned with the most commonly used combinational logic mod-
ules, which include encoders and decoders, multiplexers and demultiplexers, and mag-
nitude comparators. In addition, a multiplexing-driven seven-segment light-emitting
diode (LED) display system which combines the use of a decoder, as well as a multi-
plexer, is discussed in detail.

Chapter 9 examines several basic sequential modules that are widely used in
digital systems. These include flip-flops, synchronizers, a switch-debouncing circuit,
registers, data registers, register files, shift registers, counters (binary, BCD, Johnson),
CRC generators and detectors, clock generators and pulse generators, as well as timing
generators.

Chapter 10 describes various design options of digital systems. These options
include application-specific integrated circuits (ASICs) and field-programmable de-
vices. ASICs are devices that must be fabricated in IC foundries and can be designed
with one of the following: full-custom, cell-based and gate-array-based approaches.
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Field-programmable devices are the ones that can be personalized in laboratories
and include programmable logic devices (PLDs), complex PLDs (CPLDs) and field-
programmable gate arrays (FPGAs). In addition, the issues of interfacing two logic
modules or devices with different logic levels and power-supply voltages are also dealt
with in detail in this chapter.

The next three chapters consider three closely related issues: design, synthesis
and verification. Chapter 11 introduces two useful techniques by which a system can
be designed. These techniques include the finite-state machine (FSM) and register-
transfer level (RTL) design approaches. The former may be described by using a state
diagram or an algorithmic state machine (ASM) chart; the latter may be described
by an ASM chart or by using the datapath and controller (DP+CU) paradigm. For a
simple system, a three-step paradigm introduced in the chapter may be used to derive
the datapath and controller of a design from its ASM chart. For complex systems,
their datapaths and controllers are often derived from specifications in a state-of-the-art
manner. An example of displaying four-digit data on a commercial dot-matrix liquid-
crystal display (LCD) module is used to illustrate this approach. In this chapter, we
also emphasize the concept that a hardware algorithm can usually be realized by using
either a multiple-cycle or a single-cycle structure. The choice is based on the tradeoff
among area (hardware cost), performance (operating frequency or propagation delay)
and power consumption.

Chapter 12 is concerned with the principles of logic synthesis and the general
architecture of synthesis tools. The function of logic synthesis is to transform an RTL
representation into gate-level netlists. In order to make good use of synthesis tools,
we need to provide the design environment and design constraints along with an RTL
code and technology library. Moreover, we give some guidelines about how to write a
good Verilog HDL code such that it can be accepted by most logic synthesis tools and
can achieve the best compile times and synthesis results. These guidelines also include
clock signals, reset signals and how to partition a design.

Verification is a necessary process that makes sure a design can meet its specifi-
cations both in function and timing. Chapter 13 deals with this issue in more detail and
gives a comprehensive example based on FPGA design flow to illustrate how to enter,
synthesize, implement and configure the underlying FPGA device of a design. Along
with the design flow, static timing analyses are also given and explained. In addition,
design verification through dynamic timing simulations, incorporating the delays of
logic elements and interconnect, is introduced.

The next two chapters are concerned with more complex modules. Chapter 14
examines many frequently used arithmetic modules, including addition, multiplication,
division, ALU, shift and two digital-signal processing (DSP) filters as well. Along with
these arithmetic operations and their algorithms, we also re-emphasize the concept
that a hardware algorithm can often be realized by using either a multiple-cycle or a
single-cycle structure.

Chapter 15 describes the design of a small pC system, which is the most complex
design example in the book. This system includes a general-purpose input and output
(GPIO), timers and a universal asynchronous receiver and transmitter (UART) being
connected by a system bus composed of an address bus and a data bus, as well as a
control bus. The 16-bit CPU provides 27 instructions and 7 addressing modes.
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The final chapter is concerned with the topic of testability and testable design.
Testing is the only way to ensure that a system or a circuit may function properly. The
goal of testing is to find any existing faults in a system or a circuit. In this chapter,
we examine fault models, test vector generations, testable circuit design or design for
testability. In addition, system-level testing, such as SRAM, a core-based system and
system-on-a-chip (SoC), are also briefly dealt with.

Appendix A contains a complete syntax reference of Verilog HDL, including the
keywords and formal definition of the Verilog-2001 standard in Backus-Naur Form
(BNF).

SUPPLEMENTS

Two important and useful supplements are available for this book at the following
URL: www.wiley.com/go/mblin. The first is student supplements, including source files
of Verilog HDL examples in the book and the pdf files of lecture notes. The second is
the instructor’s supplements, containing figures, a solution manual and lecture notes in
power-point files, in addition to the student supplements.

STUDENT PROJECTS

Many end-of-chapter problems may be assigned as student projects, in particular, the
problems of Chapters 11, 14 and 15. Of course, many other chapters may also contain
problems that may be used for the same purpose.
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