OFFICIAL
PROCEEDINGS
OF THE THIRTEENTH

INTERNATIONAL T Tee

CONEERENCE

s

. OCTOBER 3-8, 1988
DEARBORN, MICHIGAN

OFFICIAL
PROCEEDINGS
OF THE THIRTEENTH
INTERNATIONAL

MOTOR-CON °88

CONFERENCE

OCTOBER 3-6, 1988
DEARBORN, MICHIGAN

This Book the Property of

MOTOR-CON » OCTOBER 1988 PROCEEDINGS |

This document is distributed exclusively by

intertec Communications, Inc.

2472 Eastman Avenue, Bidgs. 33-34
Ventura, California 93003-5774, USA
PHONE: (805) 658-0933

TELEX: 182218 Intertec

FAX: (805) 656-0170

Copyright © 1988 by
Intertec Communications, Inc.

Library of Congress Catalog Card Number 88-08248]1
ISBN O-931033-12-8

Thirteenth International Motor-Con Conference October 1988

Published by Intertec Communications, Inc.
2472 Eastman Avenue, Bldgs. 33-34
Ventura, Cdalifornia 93003-5774, USA

All rights reserved. This book, or any part thereof, may not be reproduced in any form without permission
of the publisher. Printed in the United States of America. The responsibility for the content of each paper
rests solely with its author. The publisher assumes no liability for the use of the information herein; nor any
infringements of patents, or other rights of third parties.

Il MOTOR-CON ¢ OCTOBER 1988 PROCEEDINGS

MOTOR-CON ’88 - OCTOBER
TABLE OF CONTENTS

Session Page

Technical Papers and Authors No. No.
An Advanced Motion Control Development System for Custom Applications

—David T. Robinson and David E. Halpert, Creonics Inc., (USA) 2-3.2 1
A New Approach to Robust Model Following Control of Manufacturing Systems

—Yieth-Jang Liang, Automatic Control Division, Industrial Technology Research Institute, (Taiwan) 2-3.3 14
An Optimized Drive for Step Motor Closed Loop Controllers

—Pavel Ghelfan, Millipore Corporation, (USA) e 2-3.4 25
Industrial Robots/Servomotors Control Systems and Mechanism

—Yuji Akiyama, Kanagawa Institute of Technology, (Japan).c...c.ovioo .. 2-3.5 31
Robust Position Controls Using Variable Structure Systems

—Gregory Kanevsky, Kulicke and Soffa Industries, Inc., (USA) 2-3.6 41
Integrating Precision Motion Into Bus-Based Control Systems

—Gregory S. Wilson, Creonics Inc., (USA) e 411 54
New Integrated Circuit Produces Robust, Noise Immune System for Brushless DC Motors

—Bob Neidorff, Unitrode Integrated Circuits Corp., (USA) 4-1.2 65
Multi-Segment Continuous Path Contouring on an IBM PC

—Patrick D. Russell, Creonics Inc., (USA) 413 75
Transistor Inverter for High Performance 70 HP Drive System

—R.D. King, F.G. Turnbull, E. Delgado, P.M. Szczesny, General Electric Corp., (USA). 4-1.4 86
PC-Based Advanced Motion Controller Simplifies Mechanical Design

—Jacob Tal & Wayne Baron, Galil Motion Control, (USA) 4-1.5 99
Computer-Aided Servo Design - Analysis, Design and Evaluation by the PC

—dJacob Tal & Randy Andrews, Galil Motion Control, (USA) 4-1.6 110

A Next Generation High Performance CMOS/BIPOLAR/DMOS H-Switch
—M. Izadinia, P. Ueunten, National Semiconductor Corp., (USA);
D. Tam, D. Kinzer, K. Wagers, International Rectifier Corp., (USA). 51 117

Power ICs for Motor Control: The Challenges and the Concerns of Military Versions,
Applications, and Specifications

—Paul R. Emerald, Sprague Semiconductor Group, , (USA) 52 127
Three Phase Brushless Driver in Multipower BCD Technology

—E. Balboni, G. Pietrobon, D. Rossi, C. Vertemara, SGS-Thomson Microelectronics SpA, (ltaly) . . 5.3 136
Two Dual Full-Bridge Motor Driver ICs Provide Drive Solutions for Bipolar Stepper Motors

—Thomas E. Truax, Sprague Semiconductor Group, (USA) 5.4 149
A New Family of Quad Power Drives for Use in Automotive Applications

—Norbert Hepfinger, Anthony Osladil, Gary Schneck, Jr., Sprague Semiconductor Group,, (USA) 55 161
Accuracy of Finite Element Meshes in A PC Based System

—B. Forghani, A. Shewchuk, H. da Costa, Infolytica Corporation, (Canada) 6.1 175
Analysis of A Fast Acting Solenoid

—Sheila Wilson, General Motors Corp., Dr. Nancy J. Lambert, The MacNeal-Schwendler Corp., (USA) 6.3 182
Value Analysis of Motor Components

—Bill Griffith and Garnett Craig, Dynacast, (Canada)ciiiiiiuinaniean.. 6.4 188

MOTOR-CON ¢ OCTOBER 1988 PROCEEDINGS il

Session Page
Technical Papers and Authors No. No.
Microstepping Controller IC Supports Third Generation Stepper System
—Thomas L. Hopkins, SGS-Thomson Microelectronics, (USA) 10.1 195
Stepping Motor Drive Chip Selection Considerations
—C.K. Taft, S.R. Prina, University of New Hampshire, (USA) 10.2 201
On the Control of Step Motors Driving a Load Through a Compliant Coupling
—Albert C. Leenhouts, Litchfield Engineering Co., (USA). 10.3 231
Investigation on Stability of Hybrid Stepping Motors
—T. Takahashi, Nihon Institute of Technology, (Japan);, H. Dohmeki, Oriental Motor Co., Ltd., (Japan);
Y. Akiyama, Kanagawa Institute of Technology, (Japan) 10.4 238
Session Page
Late Listings No. No.
Implementation of Self Tuning Regulators With TMS320 Family of Digital Signal Processors
—Irfan Ahmed, Semiconductor Division, Texas Instruments, Inc., (USA) 2-3.1 248
Direct-Drive Finds Unusual Applications in Machine Tools and Factory Automation
—Pradeep K. Goel, Precision Products Division, NSK Corp., Ira Cushing, NSK Motornetics Corp., (USA) 1-2.2 263

Any papers received after publication date are not included in these Proceedings and may
be obtained by writing directly to the authors. Papers received after deadline date (but

before publication) will be found under Late Listings, and at the back of this book.
IV MOTOR-CON » OCTOBER 1988 PROCEEDINGS

An Advanced Motion Control
Development System for Custom Applications

By
David T. Robinson, N(Ilarketing Manager

an
David E. Halpert, Director of Technology
Creonics Inc. Lebanon, New Hampshire USA

Abstract: An integrated programming, de-
bugging, and operating environment for
developing custom high-performance motion
control applications is presented. This new
system architecture integrates all phases of
software development and support making
custom motion control systems fast and easy.
Included are discussions of the IBM PC-
resident software development and
debugging program, the target motion
controller including its resident operating
system, and the advanced motion control
language itself.

INTRODUCTION

One of the largest problems facing the user of motion control equipment today is
programming. No matter what the application, some level of programming is required to take a
general-purpose digital motion controller and adapt it to the requirements of the specific
application. In some well-served market niches, special-purpose dedicated controllers such as
CNCs for machine tools, feeders for roll-feeding applications, etc. have appeared. In many cases,
these dedicated controllers are adequate for the application. They have some flexibility to handle
variations in basic machine operation, but usually this is very narrow.

There is a large number of motion control applications that do not fall into one of these rigidly
defined niches. There are many OEM machine manufacturers that have a specialized control
problem which is unique to their particular process. Similarly, there are a great many End Users
or Systems Integrators who are building one-of-a-kind production machines or process lines
which have complex motion control aspects and/or associated customized process logic.

In each of these cases special programming has to be done -- usually by the control system
manufacturer and at the customer's expense -- to implement the desired feature in the dedicated
controller. It is often an expensive and time consuming process to give sufficient specifications to
the control manufacturer for him to do the software. Also, many process problems are complex and
require a special knowledge of the application. The customer is then stuck with a control that's not
quite standard, and with a software solution to a problem which may not even be well understood.
This make support very difficult from both the control system manufacturer and the customer's
viewpoint.

To answer the need for an easily programmable motion controller for custom applications, a
user-friendly applications-oriented programming language is required. Such a language must

MOTOR-CON » OCTOBER 1988 PROCEEDINGS 1

allow the application or process expert (rather than a computer programmer) to write the
application-specific program.

In addition, a complete and easy-to-use application development system is required so that the
custom controls incorporating this language are easy to support. This is not only for the benefit of
the ultimate end-user, but also for the system integrater or OEM who develops the custom control
system, and the motion control manufacturer. If the language and its associated application
development system are easy to use, the system integrater or OEM is well prepared to react quickly
to the inevitable specification changes which accompany any automation job.

PROGRAMMING LEVELS

In any custom motion control application, there are three levels of programming which are
required. As shown in Figure 1, the top level is the application program itself -- the software which
gives the general purpose motion controller its custom "personality” for the specific application.
The application program is usually written by an Applications Engineer familiar with the
requirements of the machine or process, but not necessarily a computer programmer.

Application Programming

Machine Setup

Figure 1
Custom Motion Control Programming Levels

Once the application program is written and de-bugged, and the control system integrated with
the machine or process, the machine-specific setup parameters required by the application must be
programmed. This second Machine Setup level of programming includes such things as setting
up the drive system and tuning the servo gains, programming the feedback conversion constants,
homing and overtravel configuration, etc. This level of programming is usually done once at
machine installation by the installation technician.

2 MOTOR-CON e OCTOBER 1988 PROCEEDINGS

The third level of programming is done by the machine operator as the machine is used in
actual production. This third Job Setup programming level allows the machine operator to change
process parameter values to alter the "recipe” as required. This is usually accomplished via some
type of operator interface connected directly to the motion controller on the machine. For example,
in a sheet feeding application, the operator may need to be able to program the desired Feed Length,
Feed Rate, Number of Sheets, etc., as required by the day's production schedule.

The motion control language and its associated application development system must address
all three levels of programming. Ideally, they should allow the applications programmer to not
only write the application program itself, but also to tailor the operator interface for the specific
application. The Machine Setup programming should be menu-driven so that the installation
technician can set up the motion control system quickly and easily.

THE ELEMENTS OF A CUSTOM MOTION CONTROL SYSTEM

The elements of a custom motion control system are shown in Figure 2, and correspond to the
three programming levels discussed above.

O

= -

Software
Development System

(oo}

High-Performance SAM-EX
Motion Control Card
| —] —
C D
Operator Interface e

‘ =]
oooo []
onoon0 D000

Figure 2
Elements of a Custom Motion Control System

MOTOR-CON « OCTOBER 1988 PROCEEDINGS 3

Rather than incorporate the software development system into the motion controller as is done
with some general purpose motion controllers, an IBM PC or compatible personal computer is used
for application software development. By harnessing the power of the PC via a dedicated motion
control development system software package, many sophisticated programming tools not
available in a dedicated motion controller may be incorporated, making software development as
easy as possible. This also simplifies the operating system software in the motion controller itself
by eliminating the software development functions.

The high-performance Motion Control Card (MCC) executes the application program to control
the machine in the desired fashion and provides the menu-driven Machine Setup programming
level. It also closes and stabilizes the servo loop(s), handles the discrete I/0, and communicates
with the operator interface. The Creonics SAM-EX is a typical high-performance Motion Control
Card.

The exact form of the operator interface depends on the specific application. In a completely
automated environment, a central host computer or PLC may download the required values at the
request of the operator. In stand-alone applications, an operator control station with an alpha-
numeric display and keypad or a control panel with thumbwheels and pushbuttons may be used.
The MCC should be capable of interfacing to all of these different operator interfaces.

AN APPLICATIONS-ORIENTED LANGUAGE FOR CUSTOM MOTION CONTROL

In response to the above needs, Creonics has developed ACCEL, an Advanced Custom Control
Engineering Language. ACCEL provides an applications-oriented programming language which
allows application experts to provide custom motion control solutions using general purpose
motion control hardware.

ACCEL is a powerful yet simple to use motion and process control language which allows a
complete custom "personality” to be stored and executed within the high-performance Motion
Control Card. The MCC, once loaded with the ACCEL program, becomes a dedicated, stand-alone
machine controller capable of many sophisticated motion and process control functions.

There are three essential elements which are keys to ACCEL's customization capability. The
first is the ability to handle variables and evaluate mathematical expressions on-the-fly. The
second element is a simple set of commands which allow complete customization of the operator
interface. The third element is a complete set of built-in high-level motion functions to allow
complex motion requirements to be easily programmed.

Variables and Expressions

Variables come in two types: User Variables and Internal Variables. User Variables are
defined by the application programmer and can be used for whatever function is required.
Internal Variables allow motion-related values such as current axis position, current velocity,
etc. to be used directly in the application program. Expressions allow addition, subtraction,
multiplication, and division operations to be performed on variables and constants, providing
real-time calculation capability.

User Variables have a definable numeric format, optional range checking to reject illegal
values and an optional prompt string to be used when a value for that variable is entered by the
operator via the operator interface. For example, consider the simple material feeding application
shown in Figure 3.

4 MOTOR-CON OCTOBER 1988 PROCEEDINGS

Material
Being Fed

N

8 S—— Servo X Axis
= Amp Motor/Encoder
>
w
s e
<
(%)
Figure 3

Simple Material Feeder Application

User Variable VO might be used for the Feed Length and V1 for the Feed Rate. In this case, each
variable is defined using a DEF statement which specifies the numeric format (F=), the upper and
lower value limits (U= and L=), and the prompt string (P=) as shown below:

DEF V0 [F=XX.XXX, U=50.000, P="Feed Length (inches) :"]
DEF V1 [F=XX, L=10, P="Feed Rate (% of Maximum) :"]

In this application, the actual feed is an incremental move with a distance of VO at a rate of V1.
This can be accomplished as shown below:

MIVO0, @Vl

Programming a Custom Operator Interface

The operator interface for Job Setup programming (see Figure 1) is fully programmable.
ACCEL allows the application programmer to determine what parameters the machine operator is
allowed to enter. In many languages available for controls, it requires a significant
programming effort to develop the software associated with an operator interface. ACCEL is
specifically designed with a built-in preconfigured operator interface which is suitable for wide
range of operator parameter entry. It incorporates a prewritten menu structure and easily
configured automatically updating status display. In the code fragment given in the previous
paragraph, the two definition (DEF) statements used to describe the variables used for operator
specification of the process parameters for the example feeder application also include customized
specifications for the necessary operator prompts and range limits. No additional program
statements need be included to handle the operator interface.

MOTOR-CON * OCTOBER 1988 PROCEEDINGS 5

In this same application, a complete definition of an auto refreshing status display including 2
fields of numeric data for the current feeder position and speed can be defined by the following
single ACCEL statement:

DISP ["Feed Pos"=VPX," Speed"=VUX]

For more specialized operator interface requirements, language statements are available to
easily incorporate custom menus, English-language prompts, direct numeric parameter editing
with range-checking, and toggle-selected options into the operator interface. In this way, a more
sophisticated and unique operator interface -- customized for the specific application -- can be
easily programmed with a minimal number of statements.

In the simple feeder example discussed above, the values for User Variables VO and V1 are
entered via a menu selection included as part of ACCEL's built-in Standard Operator Interface.
However, if the application programmer desires to prompt the machine operator for these values
when they are required (rather than having them be set in beforehand), this can be implemented as
shown below:

?"Feed Length (Inches)",V0
?"Feed Rate (% of Maximum)",V1

When these commands are encountered in the ACCEL program, the prompt message ("Feed
Length (inches)" or "Feed Rate (% of Maximum)") is displayed and the operator may then enter
the appropriate value.

In many applications, different operating modes such as Manual, Semi-Automatic, and
Automatic must be selected by the operator. The most straightforward way of doing this is to
display the three options sequentially and allow the operator to select the appropriate one. This type
of selection is called "Toggling" and can be implemented directly using a single ACCEL
statement:

?2T"Operating Mode?",V10, "MANUAL", "SEMI-AUTO", "AUTO"

When this statement is encountered in the application program, the currently selected mode
(as determined by the current value of V10) would be displayed.

Operating Mode? MANUAL

The machine operator may then select a new mode by pressing the TOGGLE key until the
desired mode appears and confirm the new mode by pressing ENTER. The value of the selected
mode (1, 2, or 3) is then stored as the value of V10. V10 can then be used within the application
program to select the appropriate action.

6 MOTOR-CON » OCTOBER 1988 PROCEEDINGS

In more complex applications, a more sophisticated menu structure may be required for the
operator interface. Such custom menus can be implemented within the application program using
several of the built-in high-level functions. The following program fragment implements a
simple single-level menu which might be used in a drill and tap application.

P" |DRILL|TAP |RETRACT | PAUSE | " \Display Menu

$1 \Loop-back Label

?K1 \Wait for a key
(VK=49)>10 \If Key 1, do Drilling
(VK=50) >20 \If Key 2, do Tapping
(VK=51) >30 \If Key 3, Retract
(VK=52) >40 \If Key 4, Pause

>1 \Illegal key - loop back

More sophisticated menus with sub-menus can be implemented in a similar fashion.

High-Level Motion Functions

Many application problems require additional motion control functions in addition to the
usual incremental and absolute moves. By identifying fundamental motion building blocks and
implementing at a high level so the the application programming does not need to be concerned
with the internal details, a wide range of sophisticated customized motion control operations can

be easily implemented. Examples of such functions include Software Limit Switches and Position
Registration.

Software Limit Switches allow programming certain actions (like changing axis speed) to
occur at pre-defined axis positions, much the same as hard-wired electrical limit switches. The
following ACCEL command sets up a software limit switch to slow the X Axis to a creep speed when
it is 1 inch away from its programmed destination. The creep speed is stored in User Variable V12
and the programmed destination in V40.

WX (V40-1) ,>@V12

Position Registration is a common requirement whenever there is slippage in the mechanical
transmission (belts, feed rolls, etc.), or whenever axis position must be calibrated to some physical

event. Printing, packaging, and roll feeders are examples of applications requiring position
registration.

For example, consider a roll-feed application where the position of the material being fed must
be re-calibrated to a lead-edge sensor to compensate for slippage in the feed rolls. Such an
application is illustrated in Figure 4.

MOTOR-CON » OCTOBER 1988 PROCEEDINGS 7

C Material
Being Fed
Ba68 |
Input \ 7
v'2 O
Lead-Edge
8 | Servo Sensor
= Amp
P
]
s -
<<}:) X Axis
Motor/Encoder
Figure 4

Position Registration in a Roll-Feeding Application

If the lead-edge sensor is connected to discrete input 12 on the MCC, the following command
registers the material to the sensor by resetting the axis position to zero when the lead-edge sensor
is activated.

RX12,1,N0.00

A non-zero position may also be specified to compensate for any offset between the sensor and
the desired zero position of the material.

These high-level motion functions are only truly useful in the real-world if they can be
executed in real time without regard for the position error resulting from the execution time of the
statement itself. ACCEL is designed such that the all time-critical commands are executed as fast
as if it were written in assembly code. This powerful feature gives the application programmer the
speed benefits of assembly-language with the ease of programming of a high-level language.

MAKING APPLICATION PROGRAMMING EASY

To allow the application program development to proceed in parallel with the machine
construction, ACCEL allows the application program to be developed "off-line". In other words, the
actual motion controller itself is not be required to develop the application program. The
application development system, called ACCEL Programmer's Workshop (APW), is a software
package which runs on an IBM PC and provides the applications engineer or system integrater
with a complete set of tools necessary for developing custom application programs using ACCEL.

8 MOTOR-CON « OCTOBER 1988 PROCEEDINGS

Prompted Programming

In any programming language, one of the most difficult things for a non-programmer to
master is the command syntax -- the rules by which commands are constructed. Not only must all
the commands be memorized, but also a strict set of rules as to how each command is constructed.
This can be a daunting proposition in any language, but especially in a specialized but highly
versatile language such as ACCEL. Once the command construction and statement syntax are
mastered, however, application programs can be written quickly and efficiently using any
standard text editing program.

To allow both the novice and the experienced ACCEL programmer to create application
programs easily, APW incorporates a full-featured text editor with a built-in prompted English-
language command constructor accessible via pop-up menus. Available at any time during
program development, this command constructor, called EasyACCEL, actually writes
syntactically correct ACCEL commands by prompting the programmer for the desired action at
every step of the way.

EasyACCEL provides a number of important benefits to the application programmer. Since its
use is optional, an experienced programmer is not handicapped and can always write program
statements directly. The novice, however, has a powerful tool with which to learn the new
language and can begin programming immediately with very little reference to the manual. In
addition, since the actual program statements are constructed on-screen as menu choices are
made, EasyACCEL is an excellent on-line reference and learning tool for correct command
construction and syntax.

Accessing EasyACCEL while in the text editor requires a single keypress. A menu of
command type options (Figure 5) is then displayed, and the desired selection made. Another sub-
menu of options specific to the selected command type is then displayed and a selection made.
This process continues until all selections relating to that command are made. As each selection
is made, the correct command syntax for that selection is displayed on-screen at the appropriate
point in the program. When all selections relating to the command have been made, the command
is complete and inserted into the program.

Step Types:

Fl - Header Statements
F2 - Servo Control
F3 - Positioning Commands
F4 - Program Flow
F5 - Event Handling
F6 - I/0O Control
F7 - Status Info

F8 - Operator Interface
F9 - Equation

F10 - Comment

ESC - Cancel Selection

Figure 5
EasyACCEL Step Type Menu

MOTOR-CON * OCTOBER 1988 PROCEEDINGS 9

For example, suppose the application programmer needs to move the axis a certain distance at
a certain speed. To construct this command, press F3 to select "Positioning Commands" from the
"Step Types" menu shown in Figure X. At this point, the "Positioning Commands” menu as
shown in Figure 6 is displayed.

Positioning Function:

Fl - Move Incremental

F2 - Move Absolute

F3 - Gear X to Y

F4 - Home Axis

F5 - Jog

F6 - Stop Motion

F7 - Change Speed

F8 - Redefine Position

F9 - New Max Velocity
F10 - New Max Acceleration
ESC - Cancel Selection

Figure 6
EasyACCEL Positioning Function Menu

"Move Incremental” is selected by pressing F2. The ACCELcommand "MI" (Move
Incremental) is then displayed and the programmer prompted for the distance and acceleration
values. These values may be a constant, variable, or expression, and may be entered directly or
prompted for as desired by the application programmer. As the values are entered, they are
displayed using the proper syntax after the MI. The complete command can therefore be
constructed without knowing anything about the programming language or its syntax!

Program Verification

One of the most annoying features of many motion programming languages is that all
program de-bugging must be done after the program is downloaded into the motion controller.
This makes correcting any programming errors very difficult since the errors must be corrected
using the development system and the entire program re-loaded. In addition, unless the motion
controller is available during program development, errors are not detected until the motion
control system is installed on the machine. This is usually a very time-critical phase of any
project and not the place to be finding programming errors!

For this reason, APW provides a built-in Program Verifier to detect programming errors
before the application program is downloaded to the MCC. This allows programming errors to be
caught and corrected at the programming stage rather than after the control system is installed on
the machine.

The Program Verifier feature of APW checks the complete application program for proper
syntax, proper use of labels and variables, and proper expression construction. When an error is
found, the offending line is displayed with an arrow pointing to the improper character. A
message is also displayed indicating what the problem is. Program errors are displayed as they
are detected or can be accumulated in a file to provide an error listing. Figure 7 shows a typical
syntax error as caught by the Program Verifier.

10 MOTOR-CON » OCTOBER 1988 PROCEEDINGS

Checking for ACCEL program syntax...
Line 129
MV0+V10@V11
~"—-Expecting comma here!
Press any key...

Figure 7
Program Verifier Operation

Automatic Application Program Download

Once the application program is written and verified as described above, it must be
downloaded to the MCC for final de-bugging on the machine. APW provides a fully automated
utility for downloading the application program and configuring the MCC properly for the
application. Downloading the completed program is as simple as selecting an item from the
displayed menu.

When the application program has been downloaded to the MCC, APW's Terminal Mode
allows the IBM PC to function as a terminal or Operator Control Station for final debugging.
Terminal Mode provides a number of pop-up help menus which provide English-language
displays of Status Codes, Error Codes, etc. In addition, special diagnostic commands included in
ACCEL allow displaying each command as it is executed and single-stepping the program to make
de-bugging easy.

MAKING CUSTOMER SUPPORT EASY

To make supporting the custom application after the machine is delivered to the final customer
easy, changes and updates must be able to be made easily. Many times, a bug is discovered only
after the machine has been in service for some time. This bug must be fixed and the software and
documentation updated and delivered to the customer.

Traditionally, fixing a bug in a custom application program required the programmer to
travel to the customer site with a software listing, find the bug, return to the factory to fix it, and
send the updated software to the customer. Obviously, this method is not very easy for the customer
or the programmer!

Software Updates via Floppy Disk

A better method of updating controls in the field involves providing the customer with an
application support software package which runs on an IBM PC. With this approach, software
updates can be distributed on inexpensive floppy disks which the customer uses with the application
support package to update the controls. Such a support package must be extremely easy-to-use and
include only those functions necessary for updating and documenting the application software.

To fulfill the above needs, an application support software package called APPlink has been
developed to support ACCEL applications. APPlink allows the end-user of a custom motion control
system to save, restore, and update his custom software as required. Unlike APW, which is used to
initially develop the application software, APPlink does not allow the user to directly modify the
application software. It simply allows the "compiled” application program, including all setup

MOTOR-CON ¢ OCTOBER 1988 PROCEEDINGS 11

data and variable definitions and default values, to be uploaded and downloaded between the MCC
and the PC . This allows the end user to keep a copy of the custom software for archival purposes
and to restore the application to the MCC in the case of a malfunction.

With APPlink, updates to the custom application software may be send directly to the end user
on a PC-compatible floppy disk and downloaded to the MCC by the end-user himself. In most
cases, a trip by the programmer to the customer site is eliminated completely, reducing both the cost
and delay often associated with software updates.

Software Updates via Modem

Alternatively, the applications engineer can communicate directly with the MCC at the
customer's site over standard telephone lines using modems. This provides the fastest way to
update software in the customer's control.

As shown in Figure 8, the MCC in the customer's factory is connected to the phone system via
any standard computer modem. At the other end of the line, the application programmer uses
APPlink to download an updated application program directly to the MCC via another modem.

] §|/L, MODEM | i

Telephone
Lines

SAM-EX MODEM |¢——p

Figure 8
Updating Custom Software Using a Telephone Modem

12 MOTOR-CON ¢ OCTOBER 1988 PROCEEDINGS

