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TWO PAPERS ON REPRESENTATION
THEORY

Graeme Segal

These two papers are devoted to the representation theory of two infinite
dimensional Lie groups, the group SL, (R)X of continuous maps from a space
X into SL, (R), and the group Diff(X) of diffeomorphisms (with compact
support) of a smooth manifold X. Almost nothing of a systematic kind is
known about the representations of infinite dimensional groups, and the mathe-
matical interest of studying these very natural examples hardly needs pointing
out.

Nevertheless the stimulus to the work came from physics, and I shall try to
indicate briefly how the representations arise there. Physicists encountered not
the groups but their Lie algebras, the algebra ¢¥ of maps from X to the Lie
algebra g of SL,(R), and the algebra Vect(X) of vector fields on X. The space
X is physical space R3. Choosing a basis in g, to represent g% is to associate
linearly to each real-valued function f on R?® three operators J;(f) (i = 1, 2, 3),
such that

V0. 7@ = 2 cijp Iy (o),

k

where Cjj) are the structural constants of ¢.In quantum field theory one

writes J;(f) as f(x)j;(x)dx, where j; is an operator-valued distribution.

R®
Then the relations to be satisfied are

L), 5001 =20 e 8(x = )i @) (%)
k

where § is the Dirac delta-function.
Similarly, to represent Vect(R?) is to associate operators P(f) to vector-
valued functions f: R® = R3 so that [P(f), P(g)] = P(h), where

_, of
h= Z('ax B ax)'
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Writing P(f) =2 s f;(x)p;(x)dx this becomes

[p;(x), ;)] = 8;(x =) p;(¥) = §;(x = ¥)p;(x), (#%)

where §; = 08/0x.

Operators with the properties of j;(x) and p;(x) arise commonly in quantum
field theory in the guise of ‘“‘current algebras”. For example, if one has a com-
plex scalar field given by operators ¥/(x) (for x € R®) which satisfy either com-
mutation or anticommutation relations of the form [¢*(x), ¢(»)]. =8(x —»),
then the “current-like” operators p;(x) defined by

*
pite) =3 | w0 B - BT g
satisfy (xx). Similarly if one has an N-component field y satisfying
[YXx), Y51, =8,58(x —»),and 0y, . . ., 0, are N X N matrices representing
the generators of a Lie algebra g then the operators j;(x) = ¥*(x)0; Y(x)
satisfy (). (These examples are taken from [3].)

In connection with the quantization of gauge fields it is also worth mention-
ing that, as we shall see below, the most natural representation of the group of
all smooth automorphisms of a fibre bundle is its action on L?(E), where E is
the space of connections (‘‘gauge fields”) in the bundle, endowed with a
Gaussian measure.

Representations of the group SL(2, R)X .

This paper is concerned with the construction of a single irreducible unitary
representation of the group G of continuous maps from a space X equipped
with a measure into the group G = SL, (R). (In this introduction I shall always

think of G as SU, ,, i.e. as the complex matrices (% 2) such that
a

lal>=1b1>=1)

An obvious way of obtaining an irreducible representation of GX isto
choose some point x of X and some irreducible representation of G by
operators {U,} = on a Hilbert space H, and to make GX act on H through
the evaluation-map at x, i.e. to make f € GX act on H by Uf(x)- This
representation can be regarded as analogous to a ‘“‘delta-function” at x. More
generally, for any finite set of pointsx;, ..., x, in X and corresponding
irreducible representations g = U of G on Hilbert spaces H,...,H, one
can make G act irreducibly on the tensor product H; ® ... ® H,, by assigning

to f € GX the operator U}(’; @ ® Uf(("x) ,- The object of the paper is to
1 n

generalize this construction and produce a representation on a ‘“‘continuous
tensor product” of a family of Hilbert spaces { H, } indexed by the points of X
(and weighted by the measure on X). There is a simple criterion for deciding
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whether a representation is an acceptable solution of the problem, in view of
the following remark. For any representation U of GX and any continuous map
¢: X > X there is a twisted representation ¢*U given by (¢*U), = Uf¢. The
representation to be constructed ought to have the property that ¢*U is
equivalent to U whenever ¢ is a measure-preserving homeomorphism of X, i.e.
for each such ¢ there should be a unitary operator 7 such that de, =Ty Uqu;1 .

The paper describes six different constructions of the representation, but
only three are essentially different. Of these, one, described in §4 of the paper,
is extremely simple, but not very illuminating because it is a construction a
posteriori. I shall deal with it first. For any group I" and any cyclic unitary
representation of I on a Hilbert space H with cyclic vector £ € H (“cyclic”
means that the vectors U_ £, for all y €T, span a dense subspace of H) one can
reconstruct the Hilbert space and the representation from the complex-valued
function y = W(y) =(§, U &) onI. To see this, consider the abstract vector
space H, whose basis is a collection of formal symbols U, ¢ indexed by y € T".
An inner product can be introduced in H, by prescribing it on the basis
elements:

(U, & U, £)=¥(r1'72).

The group I' has an obvious natural action on H,, preserving the inner pro-
duct. Then H is simply the Hilbert space completion of H,. The function ¥
is called the spherical function of the representation corresponding to £ € H.

In our case the group I' = GX has an abelian subgroup KX, where K = SO,
is the maximal compact subgroup of G, and it turns out that the desired
representation H contains (up to a scalar multiple) a unique unit vector §
invariant under KX . The corresponding spherical function is easy to describe.
The orbit of ¢ can be identified with GX /KX | i.e. with the maps of X into
G/K, which is the Lobachevskii plane. (I shall always think of G/K as the open
unit disk in C with the Poincaré metric.) Given two maps f;, f,: X > G/K
the corresponding inner product is

exp { log sech p(f(x,), f(x;)) dx,
X

where p is the G-invariant Lobachevskii or Poincaré metric on G/K. This means
that the spherical function ¥ is given by

v()=exp | log Y1) dx,

X

where, ifg=(g §
b a

define a representation of GX the only thing needing to be checked is that the
inner product is positive. That is done in §4.2. But of course it is not clear

) € G, then Y(g) = |a | . To see that this construction does
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from this point of view that the representation is irreducible.

A more illuminating construction of the representation is to realize the con-
tinuous tensor product as a limit of finite tensor products. To do this we
actually represent the group of L! maps from X to G, i.e. the group obtained
by completing the group of continuous maps in the L! metric (cf. §3.4). The
L' maps contain as a dense subgroup the group of step-functions X = G, and
it is on the subgroup of step-functions that the representation is concretely
defined.

If one is to form a limit from the tensor products of increasing numbers of
vector spaces then the vector spaces must in some sense get “‘smaller”. It hap-
pens that the group SL, (R) has the comparatively unusual property (cf. below)
of possessing a family (called the “‘supplementary series’) of irreducible
representations A, (where O <X < 1) which do in a certain sense “tend to”
the trivial one-dimensional representation as A = 0. Furthermore there is an iso-
metric embedding H, ,, > H, ® H, whenever A+ u <1. Now for any partition
v of X into parts X, , ..., X,, of measures A, .. ., A, one can consider the group
G, of those step-functions X = G which are constant on the steps X;. The
group G, actson #, =H, ®.--Q H, L and when a partition »' is a refinement

of v then #, is naturally contained in .#",.. Accordingly, the group UG, of all
v
step-functions acts on U.”, and the desired representation is the completion
v

of this.

The construction just outlined is carried out in §2 of the paper. A variant
is described in § 3, where the representations { A, j of the supplementary series
are replaced by another family { L, } with analogous properties — the so-called
“canonical’” representations. These are cyclic but not irreducible, and L, con-
tains A, asa summand. In terms of their spherical functions L, tends to H, as
A = 0. The spherical function Y, of L, is very simple, given by w, (g)=la |™*
when g = (% aé) . In other words, L, is spanned by vectors &, indexed by u in
the unit disk G/K, and (§,, &, > = sech® p(u, u'). Notice that the size of the
generating G-orbit { §,} in L, tendsto 0 as A > 0.

The remaining constructions exploit a quite different idea, which is useful in
other situations too, as we shall see. I shall explain it in general terms.

Gaussian measures on affine spaces

Suppose that a group I has an affine action on a real vector space E with an
inner product;i.e. to each v € I there corresponds a transformation of E of the
form v T(y)v + B(y), where T(y): E = E is linear and orthogonal, and
B(v) € E. Then there is an induced unitary action of I' on the space L2?(E) of
functions on E which are square-summable with respect to the standard
Gaussian measure e " gy, Because this measure is not translation-invariant
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we have to define U, : L*(E) = L*(E) bv
(U, ) (v) = @, ) AT (Vv +B(V)),

where the factor
q,y(u):e;- ol =31 T()v + BN = =T ()v.B(Y)) =3 1B(7)I*

is to achieve unitarity.

The importance of this construction is that the representation of I' on L?(E)
may be irreducible even when the underlying linear action on E by v~ T(7) is
highly reducible. If the linear action T is given then the affine action is
evidently described by the map 8: I' = E. This is a ““cocycle”, i.e.

B(yY') = B(v) + T(v)B(Y"), and it is easy to see that the affine space is precisely
described up to isomorphism by the cohomology class of 8 in H!(T'; E). One
sometimes speaks of “twisting” the action of I on L2(E) by means of f.

Apart from the description just given there are two other useful ways of
looking at L?(E). The first of these is as a ‘“‘Fock space”. For the Gaussian
measure on E the polynomial functions are square-summable, and are dense in
L2(E). So L?(E) can be identified with the Hilbert space completion of the
symmetric algebra S(E) of E. (A little care is necessary here: to make the
natural inner product in S(£) correspond to the Gaussian inner product in
L?(E) one must identify S” (E) not with the homogeneous polynomials on E
of degree n, but with the ‘“‘generalized Hermite polynomials’ of degree n.)

The other way of approaching L2 (E) is to observe that it contains (and is
spanned by) elements eV for each v € E, with the property that

(ev, ev')=elv", NG

This means that L2 (E) can be obtained from the abstract free vector space
whose basis is a set of symbols {e”} -p by completing it using the inner pro-
duct defined by (). Better still, one can start with symbols €, and define

1 n2
=p —zllv—vI*.
(€,, €, =e 73 ¢

this makes it plain that the construction uses only the affine structure of E.
(Of course €, = e 3Vl v )

The group SU, ,, acts on the circle S, and has a very natural affine action
on the space E, of smooth measures on S! with integral \. E, is a coset of the

vector space £, of smooth measures with integral 0. The invariant norm in E,
is given by

1 .
lali? = 3 ~la, * whena= > a,em0dp.
n>0 n#0

Then L2 (E)) is the “canonical representation” L,. mentioned above. (This is
stated, not quite precisely, as Theorem (7.1) of the paper.) For if «, is the
Dirichlet measure on S! corresponding to u in the unit disk G/K (i.e. «, is the
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transform of d@ by any element of G which takes O to u) then Ao, € E, and

%II Ao, — ey, |12 = A? log cosh p(u, u').

Returning to the group we are studying, GX has an affine action (pointwise)
on E{ , the space of maps X = E; . (Notice that the linear action of GX onE¥
is highly reducible.) The space L2 (E{) has the appropriate multiplicative pro-
perty with respect to X: for if X is a disjoint union X = X; U X, then
ENVX o pXox gXoand L2@EH Y5y = 12BN ) ® L2(EF*). In the paper
the equivalence of the representations on L, (EiY) and on the continuous tensor
product of § §2 and 3 is proved by calculating the spherical functions, but it is
quite easy to give an explicit embedding of the continuous tensor product in
L2(E1Y ). For if Y is a part of X with measure A then the map Ely = E\/,\ given

by f— X3 ] f is compatible with the Gaussian measures, so that L? (E\/}\)
Y

is a subspace ofL2(E1Y), and for any partition X = X; U...UX, with

m(X;) = \; we have

Ly, ®--® Ly, =L*Ey,) @@ LEy, )
CLZ(E;Y‘) ®® L2(Ef(n)

= L2 (EY).

Indeed it is pointed out in [10] that for any affine space E the space L2(EX)
can always be interpreted as a continuous tensor product of copies of L?(E)
indexed by the points of X.

The irreducibility of the representation can be seen very easily in the Fock
version. For the cocycle § vanishes on the abelian subgroup KX , and so under
KX the representation breaks up into its components S” (E¢ ), on which KX
acts just by multiplication operators. The characters of K* which arise are all
distinct, so the irreducibility of the representation follows from the fact that
the vacuum vector is cyclic, which is easily proved (cf. §5.2).

The three approaches to L2(E{ ) are described in § §5, 6 and 7 of the paper.
In connection with §6 notice that to give an affine action of I" on a vector
space E is the same thing as to give a linear action on a vector space H together
with an invariant linear form /: H = R such that /7! (0) = E: the affine space is
then /71 (1). (There is no point, in §6, in considering functions f: X = H other
than those satisfying /(f(x)) = 1, and the formulae become less cumbersome
under that assumption.)

§5 describes the Fock space version, but not quite in the standard form. The
space E; of measures on the circle can be identified (by Fourier series) with a
space of maps Z - C. Accordingly E;Y is a space of maps X X Z = C, and the
symmetric power Sk (Ef() is a space of maps
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Xx ... xXx2Zx...x Z=>C

«— k — - k =

which are symmetric in the obvious sense. The effect of this point of view is to
identify L?(E {" ) with a space of functions on the free abelian group generated
by the space X, i.e. on the space whose points are “virtual finite subsets”
Zn;x; of X, with n; € Z. This is intriguing, but whether it is more than a
curiosity it is hard to say.

That concludes my account of the contents of the paper itself; but I shall
mention some related matters. The most obvious question to ask is what class
of groups G the method applies to. As it stands it evidently does not work for
groups for which the trivial representation is isolated in the space of all
irreducible representations. This excludes all compact groups, as for them the
irreducible representations form a discrete set. The isolatedness of the trivial
representation has been cleverly investigated by Kazhdan [5], who proved in
particular that among semisimple groups the trivial representation is isolated
if the group contains SL;(R) as a subgroup. The only simple groups not
excluded by Kazhdan’s criteria are SO,, , and SU,, , — notice that
PSL,(R) = SO,,, and PSL,(C) = SO; , . For these the method works just as
for SL, (R). (For example SO, , is the group of all conformal transformations
of $” 7! and the affine space E, used above can be replaced by the space of
measures on S” 7! with integral \.)

A class of groups for which the trivial representation is not isolated consists
of the semidirect products G X ¥V, where G is a compact group with an
orthogonal action on a real vector space V. Indeed if £ is a G-orbit in V an
element g € G acts naturally on L2(£2), and v € V can be made to act by
multiplication by the function e’**>*’. When the compact orbit £ is close to
the origin in ¥ the representation L2 (£2) is close to the trivial representation
(in the sense of its spherical function). Furthermore G X ¥ has an obvious
affine action on V: the induced action on L? (V) is the direct integral of the
irreducible representations L2 (£2) for all orbits 2 C V.

Thus the methods of the paper apply to all groups of the form G X V. The
importance of this is that it provides a way of constructing a representation
of the group (GX )gm Of smooth maps from a manifold X to a compact group
G. For a smooth map f: X = G induces a map of tangent bundles 7f: TX - TG,
and this can be regarded as a map which to each point x € X assigns a
“liet”j(x)€J, G = GX (T;"X ® ¢) where g isthe Lie algebra of G. As
the groups J, G is of the form G X' ¥ the method of the paper provides a
representation of the group I' of bundle maps 7X = TG. (The fact that J, G
depends on x, giving rise to a bundle of groups on X, is not important.) I’
contains (GX )sm as a subgroup, and it turns out that the representation
constructed remains irreducible when restricted to (GX )sm » at least when
dim(X) = 4. That is proved in the papers [1] and [2].

It is interesting to notice that the group of bundle maps I is just the semi-
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direct product (GX Yom X QY(X; g¢), where Q' (X; g) is the space of 1-forms
on X with values in g ; and the associated affine space E is the space of con-
nections in the trivial G-bundle on X. The fact that the space of the
representation of (GX Yem is L2(E) is, of course, suggestive from the point

of view of gauge theories in physics.

Representations of the group of diffeomorphisms

This paper is devoted to the representation theory of the group Diff(X)
of diffeomorphisms with compact support of a smooth manifold X. (A
diffeomorphism has compact support if it is the identity outside a compact
region.)

The most obvious unitary representation of Diff(X) is its natural action on
H = L?(X), the space of square-summable }-densities on X. (By choosing a
smooth measure 7 on X one can identify L2 (X) with the usual space of
functions f on X which are square-summable with respect to m. Then the action

of a diffeomorphism { on f will be f»ﬁwhere
)= 7, ) fp™" x)

and J,, (x) = dm(y ~1 x)/dm(x). But it is worth noticing that L2 (X) is canoni-
cally associated to X, and does not involve m.)

From H a whole class of irreducible representations of Diff(X) can be
obtained by the well-known method introduced by Weyl to construct the
representations of the general linear groups. For any integer n the symmetric
group S,, acts on the n-fold tensor product H®" =H ®...Q Hby permut-
ing the factors, and the action commutes with that of Diff(X). It turns out that
under Diff(X) x S,, the tensor product decomposes

H®=Q 7* Q W,,

P

where { W, } is the family of all irreducible representations of S,,, and V* is a
certain irreducible representation of Diff(X). More explicitly, V* is the space
of L? functions X x ...x X - W, which are equivariant with respect to S, :

«n -

thus it makes sense even when p is not irreducible, and V?®° = V* o V*’,
The class of representations { '? } , which were first studied by Kirillov, is
closed under the tensor product: if p and o are representations of S, and S,,,
then V? ® V7 = V?"° where p * o is the representation of S, ,,, induced
from p ® o. All of this is explained in §1 of the paper.

It is then natural to ask, especially when X is not compact, whether new
representations of Diff(X) can be constructed by forming some kind of infinite
tensor product H®* and decomposing it under the infinite symmetric group
S* of all permutations of {1, 2, 3, .. . |. This question is the main subject of the
paper, and it is considered in the following way. -

The L? functions X" - W, are the same as those X" = W, where
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X" C X" is the space of n-triples of distinct points. The symmetric group S,
acts on X", and the quotient space is B, the space of n-point subsets of X.
Diff(X) acts transitively on B{", and there is a unique class of quasi-invariant
measures on it. The representation V* can be regarded as the space of sections
of a vector bundle on B }") whose fibre is W, . An appropriate infinite analogue
of B}") is the space I'y of infinite “configurations” in X, i.e. the space of
countable subsets v of X such that vy N K is finite for every compact subset
K of X. This space, and the probability measures on it, play an important role
in both statistical mechanics and probability theory. One can imagine the
points of a configuration as molecules of a gas filling X, or as faulty telephones.
Diff(X) does not act transitively on I'y : two configurations are in the same
orbit only if they coincide outside a compact region. Nevertheless one can
define (in many ways) measures on I'y which are quasi-invariant and ergodic
under Diff(X). For each such measure u there is an irreducible representation
U, of Diff(X) on L?(I'y ; u). More generally, for each representation p of a
finite symmetric group S, there is an irreducible representation U[j . it is the
space of sections of the infinite dimensional vector bundle on I'y whose fibre
is the representation H? of S induced from the representation p ® 1 of
S, x S, (S, denotes the subgroup of permutations in S” which leave

1,2, ..., n fixed.) More explicitly, one can consider a covering space FXJ,,
of I'y defined by
Px s st Gxs0 a2 ETy x X i g €y ori=1,; oo w i

[y , is locally homeomorphic to I'y, and therefore a measure u on I'y defines
a measure &, the “Campbell measure”, on [y ,. The space of the
representation Uf is the space of maps I'y , = W, which are S, -equivariant and
square-summable for g.

The simplest and most important measures on I'y are the Poisson measures
M, (parametrized by A > 0), for which the measure of the set

. am\" .
{yETly:card(yNK)=n}is (n—:n) e ™M where m is the measure of K. More

can be said about the representations Uf = Uﬁ}\ in the Poisson case:

(i) They form a closed family under the tensor product, and have the follow-

ing simple behaviour
(@ U =U, ® V?,and
®d) U, QU =U, -

(ii) U, is what is called in statistical mechanics an “N/V limit”. In other
words, if X is the union of an expanding sequence X; C X, C X; C...of
open relatively compact submanifolds such that X, has volume A™' N then
L*(y; py ) is the limit as N = o of the spaces LS ((Xy V) of symmetric L?
functions of N points in X, . (This is explained in [4], [7], [8].)

(iii) U, has a more concrete realization as L?(E, ), where E, is an affine
space with a Gaussian measure (and an affine action of Diff(X)). E, is the space
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of - densmes fon X which are close to the standard Lebesgue 3-density
H=Q a’x)z as x = oo, in the sense that f — f, belongs to H = L?(X). This is an
affine space assoc1ated to the vector space H and the cocycle §: Diff(X) > H
given by

B =N UL ~1),
where J x)=dm(y ! x)/dm(x) as before. As we have seen when discussing

the representatlons of GX, L2 (£,) can also be regarded as a Fock space
SH)= ® L2 _(X"), but with the natural action of Diff(X) twisted by the

sym

cocycle ﬁ. Because B vanishes on the subgroup Diff(X, m) of measure-preserving
diffeomorphisms we see that in the Poisson case the representations associated
to infinite configurations break up and give us nothing new when restricted to
Diff(X, m).

In the paper the equivalence of L?(E, ) and L? (I'y ) is proved by considering
the spherical functions, but it can also be described exphc:1tly as a sequence of
maps Lgym (X")=> L(T'y). In fact L?(X) > L(I'y ) takes ?\tho the function

v 2 - | s,

Xey ‘X
while L?ym (X x X)—> L*(I'y) takes \f to

v 2 -2 | |
X

X, yey xXEey X

| s vyaxay,
X

X

and so on.

The fact that there is a Gaussian realization of the representation is closely
connected with the property of the Poisson measure u, called “infinite
divisibility”. The latter means that if X is the disjoint union of two pieces X,
and X,,so that 'y = 'y x I'y up to sets of measure zero, then
py = Y x @, where u(? is the projection of #, on I’y . This implies that
when the representation U, of Diff(X) is restricted to the subgroup
Diff(X,) x Diff(X,) it becomes U{*:) ® Uixz), a property which must
certainly be possessed by a construction of the type of L? (£)).

The reader may at first be confused by the fact that the affine action on
L?(E, ) used in this paper is the Fourier transform of the natural one used in
the paper on G¥ . Perhaps it is worth pointing out explicitly that if a group G
acts orthogonally on a real vector space H with an inner product, and
B: G = H is a cocycle, and L2 (H) is formed using the standard Gaussian
measure, then the following two unitary actions of G on L? (H) are unitarily
equivalent \ ) R

@ g~ A, where (4,¢)(h) = ez """ THIHPEON 01— pigyy),
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(b) g~ By, where (B,¢)(h) =e"F &) ¢(g™1 h).
The automorphism of L2 (H) relating them is characterized by

e(a,h)—% lall? «—s eita,h)

for all ¢ € H. The important thing to notice about it is that it takes polynomials
to polynomials.

I shall conclude this account by drawing attention to the matters treated
rather sketchily in Appendix 2, as I think they are interesting and deserve to
be investigated further. The representations we obtained from I'y were con-
structed from a particularly simple family ! H? } of irreducible unitary repres-
entations of the uncountable discrete group S”. But the group which seems
more obviously relevant — because a diffeomorphism with compact support
can move only finitely many points of a configuration — is the countable
group S, of the permutations of the natural numbers which leave almost all
fixed. The representations H” restrict to irreducible representations of S, ;
but most representations of S_ , notably the one-dimensional sign repres-
entation, do not extend to S*. (There is a natural compact convex set of
primary representations of S_, which has been elegantly described by Thoma
[9]. It is the family of all primary representations which admit a finite trace.
It contains the trivial representation, the sign representation, and the regular
representation. All members are of type Il except for the two one-
dimensional representations.) Menikoff [8] has constructed a representation of
Diff(X) corresponding to the sign representation of S, as an N/V limit of the
fermionic space LSkew ((Sy YW of antisymmetric functions of NV particles in X, .

Can one construct a representation of Diff(X) corresponding to any unitary
representation H of S, 7 A possible method is described in Appendix 2. Let us
choose an arbitrary rule for ordering thgpomts of each configuration y €'y .
This gives us a map s: I'y - X (where X~ is the space of ordered
configurations), which clearly cannot be continuous. We require of the order-
ing only “correctness’: if v and 4" differ only in a compact region then the
sequences s(7y) and s(vy") are required to coincide after finitely many terms.
Consider the subspace A; =S, s(I'y) of X*. It is invariant under
Diff(X) x S..,and A;/S_ =Ty. It was proved in §2.3 of the paper that for
any quasi-invariant ergodic measure u on I'y there is a quasi-invariant ergodic
measure & on A,. Then the space of S -invariant maps A; = A which are
square-summable with respect to g affords a unitary representation of Diff(X)
associated to (u, H, s). The extent of its dependence on the arbitrary and
inexplicit choice of s is rather unclear, as is its relation to the N/V limit of the
physicists. But the method does seem to produce, at least, a large supply of
type Il representations of Diff(X).

Vershik and Kerov [11] have proved that Thoma’s family of representations
can be obtained as limits of finite-dimensional representations of the finite
symmetric groups. (One associates representations of S, , ;, to representations



