Encyclopedia of Chemical Processing and Design &

Encyclopedia of Chemical Processing and Design

EXECUTIVE EDITOR

ASSOCIATE EDITOR

John J. McKetta

Guy E. Weismantel

66

Wastewater Treatment with Ozone to Water and Wastewater Treatment

Library of Congress Cataloging in Publication Data Main entry under title:

Encyclopedia of chemical processing and design.

Includes bibliographic references.

Chemical engineering—Dictionaries 2. Chemistry, Technical—Dictionaries. I. McKetta, John J.

II. Cunningham, William Aaron.
Tp9.E66 660.2'8'003

ISBN: 0-8247-2617-0

75-40646

COPYRIGHT © 1999 by MARCEL DEKKER, INC. ALL RIGHTS RESERVED.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

MARCEL DEKKER, INC. 270 Madison Avenue, New York, New York, 10016

Current printing (last digit): 10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

Encyclopedia of Chemical Processing and Design

66

A STATE OF THE PARTY OF THE PAR

Series, a market value of founds of founds

Control of A Bay Substitution of Control

reported in this and out of the con-

EXECUTIVE EDITOR
JOHN J. McKETTA
The University of Texas at Austin
Austin, Texas

ASSOCIATE EDITOR
GUY E. WEISMANTEL
Weismantel International
Houston, Texas

LYLE F. ALBRIGHT Purdue University Lafayette, Indiana

EDITORIAL ADVISORY BOARD

JAMES R. FAIR
Professor of Chemical Engineering
The University of Texas at Austin
Austin, Texas

JOHN HAPPEL Columbia University New York, New York

ERNEST E. LUDWIG Ludwig Consulting Engineers, Inc. Baton Rouge, Louisiana

R. A. McKETTA Chemical Engineer Purvin and Gertz, Inc.

此为试读,需要完整PDF请访问: Houston, Texast ongbook. com

International Advisory Board

RAY C. ADAM

Former Chairman of the Board N. L. Industries, Inc. New York, New York

CARL W. ALBERS

Senior Process Engineer The M. W. Kellogg Co. Houston, Texas

M. A. ALLAWALA

Managing Director National Refinery Ltd. Karachi, Pakistan

HAMED H. AMER

Chairman Agiba Petroleum Co. Cairo, Egypt

R. G. ANTHONY

Professor, Department of Chemical Engineering Texas A & M University College Station, Texas

H. J. AROYAN

Former Vice President Chevron Research Company Richmond, California

F. SID ASKARI

President Technolog, Inc. Engineering and Industrial Consultants Tehran, Iran

TOM AYRAL

Principal Key Control, Inc. Westlake Village, California

DONALD L. BAEDER

Former Executive Vice President-Science and Technology Occidental Petroleum Corporation Los Angeles, California

WM. A. BAILEY, Jr.

Former Director, MTM Process Research and Development Lab Shell Development Company Houston, Texas

TRAVIS W. BAIN

Vice President National Sales, Inc. Jackson, Mississippi

GAREN BALEKJIAN

C. F. Braun Arcadia, California

CESAR BAPTISTE

Vice President Petroleos Mexicanos Mexico City, Mexico

LEON R. MARTINEZ BASS

Sales Manager-Northern Mexico Zincamex, S. A. Saltillo, Mexico

ROBERT O. BATHIANY

Technical Planner Weyerhauser Company Tacoma, Washington

A. J. BATLA

Vice President and General Plant Manager Miles, Inc. Charleston, South Carolina

LUCIANO BENINCAMPI

Manager of Public Relations CTIP - Compagnia Tecnica Industrie Rome, Italy

LLOYD BERG

Professor Department of Chemical Engineering Montana State University Bozeman, Montana

NEIL S. BERMAN

Professor of Chemical Engineering Engineering Center Arizona State University Tempe, Arizona

D. J. BLICKWEDE

Former Vice President and Director of Bethlehem Steel Corp. Bethlehem, Pennsylvania

M. J. P. BOGART

Fluor Engineers and Constructors, Inc Santa Ana, California

Z. D. BONNER

Former Vice Chairman of the Board Gulf Oil Chem. Co. Houston, Texas

JOSEPH F. BOSICH

Bosich Consultants Humble, Texas

WILLIAM H. BOSLER

President Texas Consultants, Inc. Houston, Texas

HOWARD J. BOURGEOIS

Business Development Manager Industrial Compliance Houston, Texas 77040

ARCHIE BROODO

President Dallas, Texas

DENNIS W. BROUGHTON

Plant Manager E. I. Du Pont Victoria, Texas

RONALD T. CAMBIO

Environmental Research, Dev. & Tech Shell Development Co. Kingwood, Texas

J. MORSE CAVENDER

The Mactan Company Dusseldorf, Federal Republic of Germany

PRAMOTE CHAIYAVICH

Chief Technologist The Tahi Oil Refinery Co., Ltd. Bangkok, Thailand

S. D. CHELLAPPAN

Process Engineering Manager Occidental Chemical Corporation Houston, Texas

NICHOLAS P. CHOPEY

Editor-in-Chief Chemical Engineering Magazine McGraw-Hill, Inc. New York, New York

FRANK CHRENCIK

Former Executive Vice President Vulcan Materials Co. Birmingham, Alabama

R. JAMES COMEAUX

Vice President American Petrofina Dallas, Texas

C. W. COOK

Former Chairman, Executive Committee General Foods Corp. White Plains, New York

CHARLES F. COOK

Former Vice President Research and Development Phillips Petroleum Bartlesville, Oklahoma

RON J. COTTLE

Plant Manager, Seadrift Plant Union Carbide Chemicals & Plastics Co., Inc Port Lavaca, Texas

EARL J. COUCH Research Associate

Mobil Research and Development Corp. Dallas, Texas

JAMES R. COUPER

Department of Chemical Engineering University of Arkansas Fayetteville, Arkansas

HORACE R. CRAWFORD

Senior Staff Scientist CONOCO Corp. Houston, Texas

ORAN L. CULBERSON

Chemical Engineer Oak Ridge National Lab Chemical Technology Division Oak Ridge, Tennessee

DONALD A. DAHLSTROM

Professor of Chemical Engineering University of Utah Salt Lake City, Utah

PERRY P. DAWSON

Production Engineer Dow Chemical Co. Freeport, Texas

ELBERT M. DeFOREST

Former Director of Technology, Chemicals and Metals Vulcan Materials Co. Wichita, Kansas

ROBERT G. DENKEWALTER

Corporate Vice President Technology Allied Corp. Morristown, New Jersey

J. P. de SOUSA

Publisher Chemical Age of India Technical Press Publication Bombay, India

JAMES D. D'IANNI

Former Director of Research The Goodyear Tire and Rubber Co. Akron, Ohio

JUAN M. DIAZ

Production General Manager Rohm and Haas Mexico, S. A. C. V. Mexico City, Mexico

WERNER DIMMLING Dipl-Chemist

Dipl-Chemist Friedrich Uhde GmbH Dortmund, Germany

JOHN DOSHER

Senior Vice President PACE Consultants, Inc. Houston, Texas

S. W. DREW

Executive Director MCMC Technical Operations Merck & Co., Inc. Rahway, New Jersey

BARRETT S. DUFF

Barrett S. Duff and Associates South Pasadena, California

P. K. DUTTA

Project Manager Chemical and Metallurgical Design Company, Private Ltd. New Delhi, India

WILLIAM F. EARLY

Myers & Early, Ltd. Houston, Texas

WALTER EMRICH

Consultant Teterboro, New Jersey

E. FREDERICO ENGEL

Member of the Board of Management Chemische Werke Hüls AG Marl, Federal Republic of Germany

P. E. G. M. EVERS

Operations Manager Anzo Salt Chemical Delfzÿl Delfzÿl, The Netherlands

ALEXANDRE EVSTAFIEV

Director, Division of Technological Research and Higher Education UNESCO—Paris Paris, France

GERALD L. FARRAR

President Farrer Associates Tulsa, Oklahoma

F. M. FARRELL

Technical Director 3M Company St. Paul, Minnesota

RALPH T. FERRELL

Senior Vice President, Corporate Development Vista Chemical Company

Houston, Texas LOUIS FEUVRAIS

Directeur Général Ecole Nationale Supérieure D'Arts et Métiers Paris, France

R. A. FINDLAY

Former Director, Fuels and Lubricants, Research and Development Phillips Petroleum Company Bartlesville, Oklahoma

DALE FRIDLEY

Manager, Intermediates Technology Division Exxon Chemical America Baton Rouge, Louisiana

ROBERT H. FRITZ

Loss Control Consultants, Inc. Alvin, Texas

GARY L. FUNK

President

Director General Systemhouse Inc. Houston, Texas

BILL F. GALLOWAY

Plant Manager Quantum USI Division Port Arthur, Texas

DONALD E. GARRETT

President Saline Processors Ojai, California

ROY D. GERARD

General Manager Westhollow Research Center Shell Development Company Houston, Texas

ION GHEJAN

Department of Chemical Engineering Institute of Petroleum, Gas, and Geology Bucharest, Romania

JIM GILLINGHAM

General Manager, Process Engineering Diamond Shamrock San Antonio, Texas

B. GENE GOAR

Goar, Allison, and Associates, Inc. Tyler, Texas

MARCEL GOLDENBERG

SAMIN Corp., Inc. New York, New York

OM P. GOYAL

Technagement Consultant New Bombay, India

WILHELM GRAULICH

Director, Manager, Rubber Division Bayer AG Leverkusen, Germany

E. HENRY GROPPE

Groppe, Long, & Littell Houston, Texas

GIANFRANCO GUERRERI

INGECO Altech Group Societa per Azioni Con Sede in Milano Milan, Italy

KENNETH M. GUTHRIE

Cost Consultant Marina Del Rey, California

NORMAN HACKERMAN

Former President Rice University Houston, Texas

VLADIMIR HAENSEL

Former Vice President, Science and Technology Universal Oil Products Co. Des Plaines, Illinois

HENRY E. HALEY

Vice President Arthur D. Little, Inc. Cambridge, Massachusetts

R. L. HARVEL

Project Manager Dow Chemical International Ltd. Tokyo, Japan

J. W. HAUN

Former Vice President and Director of Engineering General Mills, Inc. Minneapolis, Minnesota

TERUAKI HIGUCHI

President Japan Fody Corp. Osaka, Japan

JOHN R. HILL, Jr.

Former President and Chief Executive Officer Gifford-Hill & Co., Inc. Dallas, Texas

PAUL E. HIME

Former Vice President Operation & Technical Hoechst Celanese Chemical Group Dallas, Texas

HAROLD L. HOFFMAN

Hydrocarbon Processing Houston, Texas

NORBERT IBL

Professor Eidg. Techn. Hochscule Zürich Techn. — Chemie Zürich, Switzerland

RUBEN F. INGA

President

Confederacion Interamerican de Ingeniera Química

Lima, Peru

JAMES R. JOHNSON

Former Executive Scientist and Director, Advanced Research Programs Laboratory 3M Company, Central Research Labs Saint Paul, Minnesota

NAJI A. KADIR

President Scientific Research Council Baghdad, Iraq

JOHN E. KASCH

Former Vice President Standard Oil Indiana Escondido, California

RAPHAEL KATZEN

Managing Partner Raiph Katzen Associates Cincinnati, Ohio

GEORGE E. KELLER II

Senior Corporate Research Fellow Union Carbide Corp. South Charleston, West Virginia

JOHN J. KELLY

Department of Chemical Engineering University College, Dublin Dublin, Ireland

HENNO KESKKULA

Research Fellow Chemical Engineering Department The University of Texas at Austin Austin, Texas

O. P. KHARBANDA

O. P. Kharbanda & Associates Cost and Management Consultants Bombay, India

WLODZIMIERZ KISIELOW

Professor of Petroleum Technology, Director of Research Department of Petroleum and Coal Centre of Polish Academy of Sciences Krzywoustego, Poland

ROBERT A. KLEIN

President and Chief Executive Officer Continental Controls, Inc. Houston, Texas

MOHAN SINGH KOTHARI

Chief Consultant Punjab Industrial Consultancy Organisation Chandigarh, India

G. R. KRUGER

President Semarck, Inc. Houston, Texas

A. P. KUDCHADKER

Professor of Chemical Engineering and Dean of Student Affairs Indian Institute of Technology, Kanpur Kanpur, India

RALPH LANDAU

Former Chairman Hulcon International, Inc. New York, New York

W. S. LANIER

Project Manager Seadrift Expansion Projects Union Carbide Corp. Houston, Texas

CLARK P. LATTIN, Jr.

Former President The M. W. Kellogg Company Houston, Texas

ISIDORO LAZARRAGA-LEANZA

Chief of Engineering and Control Empresa Nacional del Petroleo Viña del Mar, Chile

JEAN Le BRETON

Managing Director Elf Aquitaine Indonesie Jakarta, Indonesia

IRV LEIBSON

Former Vice President Bechtel Corp. San Francisco, California

PIERRE Le PRINCE

Director of Refining and Engineering Center Institut Française de Petrole Malmaison, France

C. E. LETSCHER

Caltex Petroleum Company New York, New York

C. J. LIDDLE

White Young & Partners Ltd. Herts, England

NORMAN N. LI

Director, Chemical & Process Technology Allied Signal Engineered Materials Research Center Des Plaines, Illinois

DAVID C. K. LIN

Senior Engineer Owens Corning Fiberglus Corp. Newark, Ohio

CHARLES E. LOEFFLER

Technical Manager Celanese Chemical Company Pampa, Texas

T. N. LOLADZE

Vice-Rector, Professor of the Georgian Polytechnic Institute Tbilisi, USSR

STANLEY L. LOPATA

Chairman of the Board Carboline Company Saint Louis, Missouri

PHILIPS S. LOWELL

Chemical Engineer Consultant Austin, Texas

RICHARD P. LOWRY

Manager, Technical Department Hoechst Celanese Company Clear Lake Plant Houston, Texas

W. D. LUEDEKE

Former Planning Manager E. I. du Pont de Nemours Wilmington, Delaware

BRYCE I. MacDONALD

Manager, Environmental Engineering General Electric Company Fairfield, Connecticut

HAROLD L. McDONALD

Senior Vice President BASF Corporation Parsippany, New Jersey

MICHAEL J. McGRATH

Director, Process Design & Devel, Foster Wheeler USA Corp. Clinton, New Jersey

R. N. MADDOX

Professor School of Chemical Engineering Oklahoma State University Stillwater, Oklahoma

KLAUS MAI

Former President Shell Development Houston, Texas

STANLEY D. MARTS

Supply Specialist Shell Oil Company Houston, Texas

GUY McBRIDE

Former President Colorado School of Mines Golden, Colorado

RICARDO MILLARES

President Papel Satinado, S. A. Mexico City, Mexico

ROBERT L. MITCHELL

Former Vice Chairman of the Board Celanese Corp. New York, New York

RICHARD MOLLISON

General Manager Colpapel, S. A. Pereira, Columbia

DONALD D. MULRANEY

Stone & Webster Houston, Texas

CARLOS EPSTEIN MURGUIA

General Manager and President of the Board Industrias Guillermo Murguia, S. A. Naucalpan, Mexico

TAKAYUKI NATE

Plastics Sales Department Tonen Petrochemical Co. Ltd. Tokyo, Japan

JAMES K. NICKERSON Research Associate

Esso Research and Engineering Company Summit, New Jersey

ALEX G. OBLAD

Distinguished Professor of Chemistry Mining, and Fuels Engineering University of Utah Salt Lake City, Utah

H. E. O'CONNEL

Former President Tenneco Chemicals Inc. Houston, Texas

ERNEST O. OHSOL

Consultant Ohsol Technical Associates Crosby, Texas

I. O. OLADAPO

Dean of Engineering University of Lagos Lagos, Nigeria

F. F. PAPA-BLANCO

Advisor of Educational Technology Instituto Latino Americano de la Communicacion Educativa Mexico City, Mexico

ROBIN PATE

Executive Vice President Enterprise Products Houston, Texas 77210

DILIP M. PATEL

Manager of Process Design & Technology John Brown E & C. Inc. Houston, Texas

MARCELLO PICCIOTTI

Technical Promotion Manager TechniPetrol-Rome Rome, Italy

MICHAEL POEHL

Plant Manager Amoco Performance Products Greenville, South Carolina

J. WINSTON PORTER President Waste Product Center

Sterling, Virginia R. G. H. PRINCE Professor, Head of Department Chemical Engineering University of Sydney

Sydney, Australia VALERY PRIVALKO

Head, Division of Polymer Thermophysics Institute of Macromolecular Chemistry Academy of Sciences of the Ukranian SR

HUGH S. PYLANT

Project Manager The Pace Consultants, Inc. Houston, Texas

EDWIN L. RAINWATER

Dow Chemical USA Texas Operations Industrial Chemicals Division Freeport, Texas

J. S. RATCLIFFE

Professor of Chemical Engineering University of New South Wales Kensington, Australia

FRANCIS E. REESE

Former Vice President and Managing Director International Monsanto Company Saint Louis, Missouri

AURELIO REITER

Former Research Manager of Esso Standard Italiana Roma-Italy Rome, Italy

LARRY RESEN

Larry Resen Associates Wilton, Connecticut

H. KEN RIGSBEE

Former Project Manager Phillips 66 Natural Gas Company Houston, Texas

FRANK S. RIORDAN, Jr.

Director, Technology Planning Monsanto Textiles Company Saint Louis, Missouri

DENNIS F. RIPPLE

Technical Manager, Process Technology Hoechst Celanese Corporation Corpus Christi, Texas

LOUIS R. ROBERTS

L. R. Roberts Consulting Co. Austin, Texas

RICCARDO ROBITSCHEK

Direttore Divisione Resine Societa Italiana Resine Milano, Italy

ROBERTO RODRIGUEZ

INTEVED Caracas, Venezuela

GERHARD ROUVÉ

Director of the Institute for Water Resources Development Technical University Aachen Aachen, Federal Republic of Germany

JOHN H. SANDERS

Vice President and Assistant General Manager Eastman Chemicals Division Eastman Kodak Company Kingsport, Tennessee

HIDESHI SATO

General Manager Technical Information Office Technical Development Department Nippon Steel Corp. Tokyo, Japan

GEORGE E. SCHAAL

Manager, Research and Development Produits Chimiques Ugine Kuhlmann Pierre-Benite, France

GERT G. SCHOLTEN

Managing Director Edeleanu Gesellschaft mbH Frankfurt/Main. Federal Republic of Germany

DOUGLAS M. SELMAN

Vice President Business Development & Technology Exxon Chemical Company Darien, Connecticut

M. L. SHARRAH

Former Senior Vice President Continental Oil Company Stamford, Connecticut

JOHN W. SHEEHAN

Vice President, Manufacturing and Marketing Champlin Petroleum Company Kerrville, Texas

PIERRE SIBRA

Designer Esso Engineering Services Ltd. Surrey, England

PHILIP M. SIGMUND

Professor of Chemical Engineering University of Calgary Alberta, Canada

DAVID SLOAN

Senior Product Technology Consultant The M. W. Kellogg Co. Houston, Texas

G. ALLAN SMALLEY, Jr.

Program Manager ENSR Consulting & Engineering Houston, Texas

ARTHUR L. SMALLEY, Jr.

Former President Matthew Hall Inc. Houston, Texas

J. THOMAS SMOLAREK

General Manager, Specialty Products Dow Chemical Co. Freeport, Texas

CARL I. SOPCISAK

Technical Consultant Synthetic Fuels Wheat Ridge, Colorado

PETER H. SPITZ

President Chemicals Systems Inc. New York, New York

SAM STRELZOFF

Consultant Marlboro, Vermont

MARK B. STRINGFELLOW

President & Chief Executive Officer Environmental Control Group, Inc. Maple Shade, New Jersey

Y. S. SURY

CIBA-Geigy Chemical Corp. Saint Gabriel, Louisiana

MICHAEL W. SWARTZLANDER

Staff Engineer Union Carbide Corp. South Charleston, West Virginia

T. SZENTMARTONY

Associate Professor Technical University Budapest Budapest, Hungary

M. TAKENOUCHI

General Manager of Manufacturing Department Maruzen Oil Co., Ltd. Tokyo, Japan

GLENN E. TAYLOR

Vice President, Joint Ventures & Manu. Engelhard Corp. Iselin, New Jersey

VLADIMIR TEPLYAKOV

Head of Membrane Research Center. A. V. Tochiev Institute of Petrochemical Synthesis The USSR Academy of Sciences Moscow, Russia

SOONTHORN THAVIPHOKE

Managing Director S. Engineering Services Co., Ltd. Bangkok, Thailand

SCOTT THOMPSON

Manager, Magnesium Operations Dow Chemical Co. Freeport, Texas

ROBERT S. TIMMINS

Core Laboratory Aurora, Colorado

A. A. TOPRAC

President Interchem-Hellas Athens, Greece

YORGI A. TOPRAKCLOGLU

Chairman of the Board of Directors Marshall Boya ve Vernik Sanayii A. S. Istanbul, Turkey

TOM CHUNGHU TSAI

Process Engineering Associate Dow Chemical Co. Freeport, Texas

FRANK J. TROGUS

Manager, Refinery Optimization and Performance Analysis Shell Oil Co. Houston, Texas

HERNANCO VASQUEZ-SILVA

President Hernando Vasqez & Associates, Ltd. Bogota, Columbia

M. A. VELA

President VELCO Engineering, Inc. Houston, Texas

JUAN JOSE URRUELA VILLACORTA

Ingeniero Fabrica de Jabon "La Luz, S. A." Guatemala

S. P. VOHRA

Managing Director Bakelite Hylam, Ltd. Bombay, India

A. L. WADDAMS

Former Manager, Marketing Services Division BP Chemicals International Ltd. London, England

T. J. WALKER

Former Production Manager Dow Chemical Europe S. A. Zürich, Switzerland

J. C. WALTER, Jr.

J. C. Walter Oil & Gas Co. Houston, Texas

THEODORE WEAVER

Director of Licensing Fluor Corporation Los Angeles, California

R. MURRAY WELLS

Senior Vice President Radian Corp. Austin, Texas

ALBERT H. WEHE

Chief, Cost and Energy U. S. Government Raleigh, North Carolina

PAUL B. WEISZ

Distinguished Professor Chemical and Bio-Engineering University of Pennsylvania Philadelphia, Pennsylvania

JACK W. WESTERFIELD

Manager, Project Engineering Diamond Shamrock San Antonio, Texas

D. L. WILEY

Former Senior Vice President Union Carbide Corp. Danbury, Connecticut

JACK C. WILLIAMS

Former Vice President Texaco, Inc. Houston, Texas

MASAMI YABUNE

Section Head, Technical Section Tonen Petrochemical Co., Ltd. Tokyo, Japan

LEWIS C. YEN

Manager, Technical Data M. W. Kellogg Company Houston, Texas

STANELY B. ZDONIK

Vice President and Manager Process Department Stone and Webster Engineering Corp. Boston, Massachusetts

Contributors to Volume 66

- Rayford G. Anthony, Ph.D. Head, Department of Chemical Engineering, Texas A&M University, College Station, Texas: Water Content of Hydrocarbon Liquids and Vapors, Estimation
- Ronald Blume, P.E. Principal Engineer, Process Design/Project Manager, Solutia Inc., St. Louis, Missouri: Water, Process, Ultrapure, Analysis of
- Bennett P. Boffardi, Ph.D. President, Boffardi and Associates, Inc., Bethel Park, Pennsylvania: Water Treatment, Zero Discharge, Chemical Treatment
- Joseph B. Bradburn Corrosion Engineer, Texaco USA, Houston, Texas: Water Production Rate for Condensate Wells
- José L. Bravo Shell Development Corporation, Houston, Texas: Water Treatment, Steam Strippers, Design of
- Bill Byers Senior Vice President and Director of Environmental Technology, CH2M Hill, Corvallis, Oregon: Water Treatment, Zero Discharge, Systematic Approach
- Steve Cappos National Sales Manager, Fluid Systems Corporation, San Diego, California: Water Treatment, Zero Discharge, Reverse Osmosis
- Boy Cornils, Ph.D. Hoechst AG, Frankfurt, Germany: Water-Soluble (Aqueous-Phase)

 Catalysis
- Vikas R. Dhole General Manager Development, Linnhof March Ltd., Targeting House, Rudheath Norwich, Cheshire, England: Water. Process, Reuse Maximizing
- Joseph T. Echols, Ph.D. Professor of Chemistry, Pfeiffer College, Misenheimer, North Carolina: Water, Cooling Tower, Treatment with Ozone
- Brad Fleming Glitsch, Inc., Dallas, Texas: Water Stripping. Refineries and Chemical Plants
- James D. Garber, Ph.D., P.E. Professor and Head, Chemical Engineering Department, University of Southwest Louisiana, Lafayette, Louisiana: Water Production Rate for Condensate Wells
- **Deepak Garg** Environmental Engineer, ENSR Consulting and Engineering Company, Houston, Texas: Water, Storm, Management
- Gary E. Geiger Consultant, Global Technology Department, Betz Water Management Group, Horsham, Pennsylvania: Water, Cooling, Corrosion, and Deposition Control
- Mikel E. Goldblatt, P.E. Technical Advisor, Betz Dearborn, Horsham, Pennsylvania: Water Conservation Projects, Justification
- **Kapil Gupta** Process Manager, Reliance Industries Ltd., Patalganga, Mumbai, India: Water, for Process Cooling
- Allan D. Holiday Process Editor, Chemical Engineering , New York, New York: Water
 Reuse
- John W. Hornbrook, Ph.D. Cawley, Gillespie & Associates, Inc., Houston, Texas: Waterflood Predictions

- Mark L. Hunter Project Engineer, Amoco Corporation, Worldwide Engineering and Construction, Whiting, Indiana: Wastewater Treatment Plant, Renovation
- B. G. Kelkar, Ph.D. Professor of Petroleum Engineering, The University of Tulsa, Tulsa, Oklahoma: Waterflood Predictions
- **Thomas M. Kenny** President, Ogontz Corporation, Willow Grove, Pennsylvania: Water, Freezing Conditions
- Christian W. Kohlpaintner, Ph.D. Celanese GmbH, Werk Ruhrchemie, Oberhausen, Germany: Water-Soluble (Aqueous-Phase) Catalysis
- Sheng H. Lin, Ph.D. Chairman, Chemical Engineering Department, Yuan Ze Institute of Technology, Taouyan, Taiwan, Republic of China: Wastewater Treatment with Ozone
- Béla G. Lipták, Ph.D. Former Yale Professor and President of Lipták Associates P.C., Stamford, Connecticut: Water Treatment Controls
- John J. McKetta, Ph.D., P.E. The Joe C. Walter Professor of Chemical Engineering, The University of Texas at Austin, Austin, Texas: Water Content of Hydrocarbon Liquids and Vapors, Estimation; Water Content of Natural Gases; Water, Properties of
- S. T. Mayne, Ph.D. Radiation Disposal Systems, Inc., Misenheimer, North Carolina: Water, Cooling Tower, Treatment with Ozone
- Takeyoshi Nagaoka Director, Nagaoka USA, Houston, Texas: Water, Magnetic
- Harusuke Naito Naito Bio-Science Labs Inc., Houston, Texas: Water, Magnetic
- Joel Nedrow Project Engineer, Toledo Refinery, BP Oil Company, Toledo, Ohio: Water, Storm, Underground Storage Tanks
- R. Benson Pair Chief Environmental Technology Engineer, M. W. Kellogg Company, Houston, Texas: Water, Storm, Management
- Bipin S. Parekh, Ph.D. Senior Consulting Engineer, Millipore Corporation, Bedford, Massachusetts: Water, Production of, Ultrapure
- Nand Ranchandani Operations Research Engineer, Linnhof March Ltd., Targeting House, Rudheath Norwich, Cheshire, England: Water, Process, Reuse Maximizing
- James R. Reinhardt, Ph.D. Professor, Chemical Engineering Department, University of Southwest Louisiana, Lafayette, Louisiana: Water Production Rate for Condensate Wells
- Christian Schlimm, Ph.D. Vereins und Westbank AG, Hamburg, Germany: Wastewater Treatment. Reductive Dehalogenation of Chlorinated Hydrocarbons
- Andrew W. Sloley Glitsch, Inc., Dallas, Texas: Water Stripping, Refineries and Chemical Plants
- Alan L. Smith Senior Technical Consultant, Calgon Corporation, Pittsburgh, Pennsylvania: Water Treatment, Zero Discharge, Chemical Treatment
- Richard A. Tainsh Technology Development Engineer, Linnhof March Ltd., Targeting House, Rudheath Norwich, Cheshire, England: Water, Process, Reuse Maximizing
- Arthur H. Tuthill President, Tuthill Associates Inc., Blacksburg, Virginia: Water and Design Factors, Effect on Performance of Piping Materials
- Morris Anthony Vivona, P.E. Director, Water and Wastewater, ICF Kaiser Engineers, Inc., Houston, Texas: Water, Storm, Pollution Prevention Design; Water and Wastewater Treatment

- Marek Wasilewski Senior Software Design Engineer, Linnhof March Ltd., Targeting House, Rudheath Norwich, Cheshire. England: Water, Process, Reuse Maximizing
- Albert H. Wehe Consultant, Raleigh, North Carolina: Water Content of Natural Gases
- Guy E. Weismantel President, Weismantel International, Kingwood, Texas: Water, Produced Water
- Ernest Wiebus, Ph.D. Celanese GmbH, Werk Ruhrchemie, Oberhausen, Germany: Water-Soluble (Aqueous-Phase) Catalysis
- Carl L. Yaws, Ph.D. Professor, Department of Chemical Engineering, Lamar University, Beaumont, Texas: Water Solubility of Organic Chemicals
- Kuo L. Yeh Assistant Manager of Manufacturing, Chinese Petroleum Company, Taouyan, Taiwan, Republic of China: Wastewater Treatment with Ozone
- Adam Zanker, Ch.E., M.Sc. Senior Research Engineer, Oil Refineries, Ltd., Haifa. Israel: Water, Alkalinity Calculations: Water Flow Over Weirs; Water Flow Under Gates of a Dam

Conversion to SI Units

To convert from	То	Multiply by
acre	square meter (m ²)	4.046×10^{3}
angstrom	meter (m)	1.0×10^{-10}
are and	square meter (m ²)	1.0×10^{2}
atmosphere	newton/square meter (N/m²)	1.013×10^{5}
bar services Library	newton/square meter (N/m²)	1.0×10^{5}
barrel (42 gallon)	cubic meter (m³)	0.159
Btu (International Steam Table)	joule (J)	1.055 × 10 ³
Btu (mean)	joule (J)	1.056×10^{3}
Btu (thermochemical)	joule (J)	1.054×10^{3}
bushel	cubic meter (m ³)	3.52×10^{-2}
calorie (International Steam Table)	joule (J)	4.187
calorie (mean)	joule (J)	4.190
calorie (thermochemical)	joule (J)	4.184
centimeter of mercury	newton/square meter (N/m2)	1.333×10^{3}
centimeter of water	newton/square meter (N/m ²)	98.06
cubit The Country of	meter (m)	0.457
degree (angle)	radian (rad)	1.745×10^{-2}
denier (international)	kilogram/meter (kg/m)	1.0×10^{-7}
dram (avoirdupois)	kilogram (kg)	1.772×10^{-3}
dram (troy)		3.888×10^{-3}
dram (U.S. fluid)	cubic meter (m³)	3.697×10^{-6}
dyne	newton (N)	1.0×10^{-5}
electron volt	joule (J)	1.60×10^{-19}
erg	joule (J)	1.0×10^{-7}
fluid ounce (U.S.)	cubic meter (m ³)	2.96×10^{-5}
foot	meter (m)	0.305
furlong	meter (m)	2.01×10^{2}
gallon (U.S. dry)	cubic meter (m ³)	4.404×10^{-3}
gallon (U.S. liquid)	cubic meter (m³)	3.785×10^{-3}
gill (U.S.)	cubic meter (m ³)	1.183×10^{-4}
grain	kilogram (kg)	6.48×10^{-5}
gram	kilogram (kg)	1.0×10^{-3}
horsepower	watt (W)	7.457×10^{2}
horsepower (boiler)		9.81×10^{3}
horsepower (electric)	744.75	7.46×10^{2}
hundred weight (long)	4.14 /4 /	50.80
hundred weight (short)	2 2 12 1	45.36
inch		2.54×10^{-2}
inch mercury	newton/square meter (N/m2)	3.386×10^{3}
inch water	newton/square meter (N/m ²)	2.49×10^{2}
kilogram force	newton (N)	9.806
kip	/ N T \	4.45×10^{3}
knot (international)	meter/second (m/s)	0.5144
league (British nautical)	meter (M)	5.559×10^{3}
league (statute)	meter (m)	4.83×10^{3}
light year	meter (m)	9.46×10^{15}

To convert from	То	Multiply by
liter	cubic meter (m³)	0.001
micron	meter (m)	1.0×10^{-6}
mil	meter (m)	2.54×10^{-6}
mile (U.S. nautical)	meter (m)	1.852×10^{3}
mile (U.S. statute)	meter (m)	1.609×10^{3}
millibar	newton/square meter (N/m ²)	100.0
millimeter mercury	newton/square meter (N/m ²)	1.333×10^{2}
oersted	ampere/meter (A/m)	79.58
ounce force (avoirdupois)	newton (N)	0.278
ounce mass (avoirdupois)	kilogram (kg)	2.835×10^{-2}
ounce mass (troy)	kilogram (kg)	3.11×10^{-2}
ounce (U.S. fluid)	cubic meter (m³)	2.96×10^{-5}
pascal	newton/square meter (N/m ²)	1.0
peck (U.S.)	cubic meter (m³)	8.81×10^{-3}
pennyweight	kilogram (kg)	1.555×10^{-3}
pint (U.S. dry)	cubic meter (M³)	5.506×10^{-4}
pint (U.S. liquid)	cubic meter (m³)	4.732 × 10 ⁻⁴
poise	newton second/square meter (N · s/m²)	0.10
pound force (avoirdupois)	newton (N)	4.448
pound mass (avoirdupois)	kilogram (kg)	0.4536
pound mass (troy)	kilogram (kg)	0.373
poundal	newton (N)	0.138
quart (U.S. dry)	cubic meter (m³)	1.10×10^{-3}
quart (U.S. liquid)	cubic meter (m³)	9.46×10^{-4}
rod	meter (m)	5.03
roentgen	coulomb/kilogram (c/kg)	2.579×10^{-4}
second (angle)	radian (rad)	4.85×10^{-6}
section	square meter (m ²)	2.59×10^{6}
slug	kilogram (kg)	14.59
span	meter (m)	0.229
stoke	square meter/second (m ² /s)	1.0×10^{-4}
ton (long)	kilogram (kg)	1.016×10^{3}
ton (metric)	kilogram (kg)	1.0×10^{3}
ton (short, 2000 pounds)	kilogram (kg)	9.072×10^{2}
torr	newton/square meter (N/m2)	1.333×10^{2}
yard	meter (m)	0.914

Bringing Costs up to Date

Cost escalation via inflation bears critically on estimates of plant costs. Historical costs of process plants are updated by means of an escalation factor. Several published cost indexes are widely used in the chemical process industries:

Nelson Cost Indexes (Oil and Gas J.), quarterly
Marshall and Swift (M&S) Equipment Cost Index, updated monthly
CE Plant Cost Index (Chemical Engineering), updated monthly
ENR Construction Cost Index (Engineering News-Record), updated weekly
Vatavuk Air Pollution Control Cost Indexes (VAPCCI) (Chemical Engineering),
updated quarterly

All of these indexes were developed with various elements such as material availability and labor productivity taken into account. However, the proportion allotted to each element differs with each index. The differences in overall results of each index are due to uneven price changes for each element. In other words,

TABLE 1 Chemical Engineering and Marshall and Swift Plant and Equipment Cost Indexes since 1950

Year	CE Index	M&S Index	Year	CE Index	M&S Index
1950	73.9	167.9	1973	144.1	344.1
1951	80.4	180.3	1974	165.4	398.4
1952	81.3	180.5	1975	182.4	444.3
1953	84.7	182.5	1976	192.1	472.1
1954	86.1	184.6	1977	204.1	505.4
1955	88.3	190.6	1978	218.8	545.3
1956	93.9	208.8	1979	238.7	599.4
1957	98.5	225.1	1980	261.2	659.6
1958	99.7	229.2	1981	297.0	721.3
1959	101.8	234.5	1982	314.0	745.6
1960	102.0	237.7	1983	316.9	760.8
1961	101.5	237.2	1984	322.7	780.4
1962	102.0	238.5	1985	325.3	789.6
1963	102.4	239.2	1986	318.4	797.6
1964	103.3	241.8	1987	323.8	813.6
1965	104.2	244.9	1988	342.5	852.0
1966	107.2	252.5	1989	355.4	895.1
1967	109.7	262.9	1990	357.6	915.1
1968	113.6	273.1	1991	361.3	930.6
1969	119.0	285.0	1992	358.2	943.1
1970	125.7	303.3	1993	359.2	964.2
1971	132.3	321.3	1994	368.1	993.4
1972	137.2	332.0	1995	381.1	1027.5
			1996	381.7	1039.2
			1997	386.5	1056.8

TABLE 2 Nelson-Farrar Inflation Petroleum Refinery Construction Indexes since 1946 (1946 = 100)

	(1946 = 100)			
Date	Materials Component	Labor Component	Miscellaneous	Nelson Inflation Index
1946	100.0	100.0	100.0	100.0
1947	122.4	113.5	114.2	117.0
1948	139.5	128.0	122.1	132.5
1949	143.6	137.1	121.6	139.7
1950	149.5	144.0	126.2	146.2
1951	164.0	152.5	145.0	157.2
1952	164.3	163.1	153.1	163.6
1953	172.4	174.2	158.8	173.5
1954	174.6	183.3	160.7	179.8
1955	176.1	189.6	161.5	184.2
1956	190.4	198.2	180.5	195.3
1957		208.6	192.1	205.9
1958	201.9	220.4	192.4	213.9
1959	204.1	231.6	196.1	222.1
			200.0	228.1
1960 1961	207.6 207.7	241.9 249.4	199.5	232.7
1962	205.9	258.8	198.8	237.6
1963	206.3	268.4	201.4	243.6
1964	209.6	280.5	206.8	252.1
1965	212.0	294.4	211.6	261.4
1966	216.2	310.9	220.9	273.0
1967	219.7	331.3	222.2	286.7
1968	224.1	357.4	220.2	304.1
1969	234.9	391.8		329.0
1970	250.5	441.1	2607	364.9
1971	265.2	499.9	270.0	406.0
1972	277.8	545.6		438.5
1973	292.3	(00.4	291.4	468.0
1974	373.3	623.6	1100	522.7
1975	421.0		415.9	575.5
1976	445.2	729.4	423.8	615.7
1977	471.3	774.1	438.2	653.0
1978	516.7	824.1	474.1	701.1
1979	573.1	879.0	515.4	756.6
1980	629.2		578.1	822.8
1981	693.2	1044.2	647.9	903.8
1982	707.6	1154.2	622.8	976.9
1983	712.4	1234.8	656.8	1025.8
1984	735.3	1278.1	665.6	1061.0
1985	739.6		673.4	1074.4
1986	730.0	1330.0	684.4	1089.9
1987	748.9	1370.0	703.1	1121.5
1988	802.8	1405.6	732.5	1164.5
1989	829.2	1440.4	769.9	1195.9
1990	832.8	1487.7	797.5	1225.7
1991	832.3	1533.3	827.5	1252.9