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Preface

The main objective of this book is to provide, in a concise form, a
current overall picture of flash chemistry; background, principles,
devices, and applications in organic and polymer synthesis. Because of
space limitations our discussion in this book is not an exhaustive
compilation of all known examples. Rather, it is a sampling of sufficient
variety to illustrate the concept and the scope of flash chemistry. I
usually focus on the works that have been done in my group as examples
because I know them in more detail than other works reported in the
literature. I hope that these examples and the accompanying discussions
will serve as a guide to the potential of flash chemistry.

I thank the members of my research group, especially Prof. Seiji Suga
and Dr. Aiichiro Nagaki, and the members of the NEDO (New Energy
and Industrial Technology Development Organization, Japan) projects,
who did extensive work that is demonstrated in this book. I also
acknowledge many discussions over the years with the members of
GRAMS (Groups for Research on Automated Flow and Microreactor
Synthesis) in Kinki Chemical Society, especially Prof. Ilhyong Ryu, and
the members of the international research community of microreactor
synthesis, especially Prof. Holger Léwe, Prof. Volker Hessel, Dr. Jiirgen
J. Brandner, Prof. Shinji Hasebe, and Prof. Kazuhiro Mae.

More than a half of the manuscript of this book was written during my
Humboldt Research Award stay at LMU (Ludwig-Maximilians-Universitit
Miinchen, Germany) in 2007. It was a nice occasion for me to concentrate
on writing. I thank the Humboldt foundation and colleagues of LMU,
especially Prof. Herbert Mayr who was my host in Germany.

Finally, I would especially like to thank Dr. Takeshi Yamada for his
careful and valuable assistance in the preparation of the final version of the
manuscript. I would also like to thank Prof. Hideho Okamoto for reading
and commenting on the manuscript and making helpful suggestions.

August 2008
Jun-ichi Yoshida
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1

Introduction

We tend to think that what we usually do is appropriate. This is often true
in our daily life. However, it is not necessarily true in the field of science.
For example, we usually run reactions in a centimeter size flask in an
organic chemistry laboratory. Why? The reason is probably, that the sizes
of the flasks are similar to the size of our hands. However, the sizes of the
flasks are not necessarily appropriate from a molecular-level viewpoint.
Flasks are often too big for the control of molecular reactions. Scientifi-
cally, smaller reactors such as microreactors provide a much better
molecular environment for reactions. What about reaction times? Reac-
tions in laboratory synthesis usually take minutes to hours to obtain a
product in a sufficient amount. Why? It is probably because a time interval
of minutes to hours is acceptable and convenient for human beings. In
such a range of time, we can recognize how the reaction proceeds. We start
areaction, wait for a while, and stop it in this range of time. If reactions are
too fast, it is difficult to determine how the reaction proceeds, because the
reaction is complete too soon after it is started. Therefore, we have chosen
reactions that complete in a range of minutes to hours. Another reason is
that we are able to conduct only such reactions that require minutes to
hours for completion in a controlled way. In other words, in laboratory
synthesis, we cannot conduct faster reactions that complete within
milliseconds to seconds, because they are too fast to control. In such
cases, significant amounts of unexpected compounds are obtained as by-
products. In addition, extremely fast reactions sometimes lead to explo-
sions. However, we should keep in mind that such limitations of reaction

Flash Chemistry: Fast Organic Synthesis in Microsystems Jun-ichi Yoshida
© 2008 John Wiley & Sons, Ltd



2 INTRODUCTION

time for chemical synthesis are only applicable for flask chemistry that we
usually do in a laboratory.

1.1 FLASK CHEMISTRY

Based on conventional flask chemistry, organic synthesis has witnessed a
steady march in the progress of our understanding of factors governing
chemical reactions. With a rational design of synthesis, desired com-
pounds are produced in a highly selective manner. The role of organic
synthesis has been extended to various fields of science and technology,
such as materials, pharmacy, and medicine. Conventional organic syn-
thesis, however, has been a rather time-consuming task; chemists have
been using slow reactions because fast reactions are difficult to control and
often give significant amounts of undesired by-products, as stated above.
Reaction times in conventional organic synthesis usually range from
minutes to hours. The rapid progress in science and technology based
on organic compounds means the demand to produce desired compounds
in a highly time-efficient way has been increasing. To meet such demands
and to achieve rapid synthesis of a variety of organic compounds,
acceleration of organic synthesis is highly desirable. For this purpose,
flash chemistry, where much faster reactions are conducted in a controlled
and selective way to produce desired products, is greatly needed.

We are still running chemical reactions using much of the same
apparatus that was used in the eighteenth and nineteenth centuries
(Figure 1.1). The sizes of the flasks are determined not by any scientific

Figure 1.1 Ugo Schiff (1834-1915) (provided by the University of Florence)
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reasons but probably by the size of our hands. It is not necessary to use
reactors of flask size for studies of chemical reactions and synthesis of
compounds. Therefore, if we free ourselves from the constraints of flask
chemistry, we can expect to have the chance to conduct much faster
reactions in a highly controlled and selective way to synthesize desired
compounds. There should be many fast reactions that we have not yet
explored because of the constraints of the reaction environment. Such
constraints should be removed to further develop the efficiency and utility
of organic synthesis. In order to do this, we need microflow systems as a
new environment for chemical reactions.

1.2 FLASH CHEMISTRY

The word ‘flash’ is not new in the history of chemistry. Flash chromatog-
raphy!" is one of the fundamental techniques for separating organic
compounds in laboratory synthesis. In fact, flash chromatography is very
popular with organic chemists as a convenient and effective method for
separation in daily laboratory work. For synthesis, flash vacuum pyro-
lysis'?! is also a well-known technique that has been available for many
years. Flash laser photolysis®®! is widely used for mechanistic studies
because it serves as a powerful method for generating reactive species in
a very short period of time. However, flash laser photolysis does not seem
to be suitable for chemical synthesis because it is rather difficult to produce
a large amount of compounds using this technique. In the ‘flash chemistry’
proposed here, a substrate undergoes extremely fast reactions to give a
desired product very quickly in a highly selective manner. Reaction times
rage from milliseconds to seconds (Figure 1.2). Because flash chemistry

precursor

activation

highly
reactive
species

microflow
system

reaction time:
ms-s

Figure 1.2 Schematic diagram of flash chemistry



4 INTRODUCTION

uses a continuous flow system, it is fairly easy to make a larger quantity of
compounds than one can expect from the size of the reactor. In any case,
the word ‘flash’ is very common in chemistry, but the term ‘flash chemistry’
is uncommon.

It is important to propose new words for the developments in new fields
of science and technology; as Wittgenstein wrote in his book:* ‘A new
word is like a fresh seed thrown on the ground of the discussion’. A
Japanese poet, Toson Shimazaki, also wrote in the preface of his collection
of poems:! ‘A new word leads to a new life’. Therefore, it seems useful
and productive to introduce the expression ‘flash chemistry’.

1.3 FLASK CHEMISTRY OR FLASH CHEMISTRY

At the molecular level, chemical reactions take place in the range of
10713210715 (see Chapter 2), while reaction times range from minutes
to hours (10°-10°s) in a flask (Figure 1.3). The size of molecules is in the
range of 107'°~107® m, whereas the size of a flask ranges from 1072 to
10°m. So, there is a rough correlation between the reaction time and the
size of the reaction environment, as shown in Figure 1.3. In flash chemistry,
we use a reactor, the size of which ranges from 107¢ to 10> m. The

i flask chemistry
103 HUGS
km
m flash chemistry _
size ‘
103 [
mm

10 [— molecular level

reaction
nr:o.9 L e ’E’f"'
l | | | | | | J
10" 10" 1072 10° 10° 10° 1 10° 108
fs ps ns us ms s min h

time

Figure 1.3 Time-space relationship for chemical reactions
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reaction time ranges from 107 to 1s. Therefore, it is easy to understand
that the size of the reaction environment of flash chemistry is closer to the
size of the molecular level reaction environment than is that of flask
chemistry.

This book provides an outline of the concept of flash chemistry for
conducting extremely fast reactions in a highly controlled manner using
microflow systems. In the following chapters, we will discuss the
background, the principles, and applications of flash chemistry.
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The Background to Flash
Chemistry

2.1 HOW DO CHEMICAL REACTIONS
TAKE PLACE?

What is a chemical reaction? How does it take place? These questions are
the most fundamental questions of chemistry, and they are the last to be
solved. In order to deal with flash chemistry, however, let us begin with a
consideration of such fundamental questions.

When we consider a chemical reaction, there are two viewpoints; a
macroscopic one and a molecular level one. It was only about a hundred
years ago when the reality of molecules was established. In 1905, Einstein
proposed a theory of Brownian motion, and later (1908-1912) Perrin
proved it by experimental work. They showed that Brownian motion is
caused by the collision of molecules on small particles (micrometer size).
Although some scientists at the time considered that molecules only had a
virtual existence that was useful to explain chemical phenomena, since
then, no scientist has doubted the existence of molecules. Since that time a
molecular point of view has become very popular in chemistry, although
it is rather difficult to see molecules directly even with the present
technology.

Flash Chemistry: Fast Organic Synthesis in Microsystems Jun-ichi Yoshida
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