Eng

Software

en R. Schach

Steph

ineering

econd Ed

ITion

r b0 s s

tri /s
PN

A
PV adnd

NS ANNNNNNY

SEATEE T M T S AN Y

A

OSSN NENININ, NI NAUNN

SRR N AN R SR AN A 8NN

N

NNN NN RN

%,

NN YUNNNNNSN

N

DUSIRTINTEI 7

o
\.
s
s
7
7
s
7

_

WA NN

R ONN NG TN

LNVNANNAS

SENIN N

S AN N SN

VN SANANNNNNS S
N NTANENN NANINNAN

NN INER N Y

ON S NNSIANSNN

PN S MNNNAS

AWANNNANNNNNNN

Software
Engineering

Second Edition

Stephen R. Schach

Vanderbilt University

Aksen

Incorporated
Publishers

IRWIN

Homewood, IL 60430
Boston, MA 02116

This symbol indicates that the paper in this book is made of
recycled paper. Its fiber content exceeds the recommended
minimum of 50% waste paper fibers as specified by the EPA.

© Richard D. Irwin, Inc., and Aksen Associates, Inc., 1993

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission
of the publisher.

Project Supervision: Science Typographers, Inc.
Cover and text designer: Harold Pattek
Compositor: Science Typographers, Inc.
Typeface: Times Roman

Printer: R. R. Donnelley & Sons Company

Printed in the United States of America
1234567890 DOC 9876543

Library of Congress Cataloging-in-Publication Data

Schach, Stephen R.
Software engineering / Stephen R. Schach.—2nd ed.
p. cm.—(The Aksen Associates series in electrical and
computer engineering)
Includes bibliographical references and indexes.
ISBN 0-256-12998-3
1. Software engineering. 1. Title. II. Series.
QA76.758.833 1993
005.1—dc20 92-31651

About the
Author

Stephen R. Schach is Associate Professor of Computer Science at
Vanderbilt University in Nashville, Tennessee. Dr. Schach received his M.Sc. at
the Weizmann Institute of Science in Israel, and his Ph.D. at the University of
Cape Town, South Africa. He has published over 70 technical papers in a
variety of areas, including software engineering, software testing, and computer
architecture. He is the author of the text Practical Software Engineering (Richard
D. Irwin and Aksen Associates, 1992). Dr. Schach consults for industry and
teaches courses in software engineering throughout the world. He is a member
of the Association for Computing Machinery and the IEEE Computer Society.

The Aksen
Associates
Series

in Electrical
and Computer
Engineering

Advisory
Editors

Principles of Applied Optics

Partha P. Banerjee / University of Alabama,
Huntsville

Ting-Chung Poon / Virginia Polytechnic
and State University

Object-Oriented Engineering:
Building Engineering Systems
Using Smalitalk-80

John R. Bourne / Vanderbilt University

Discrete Event Systems: Modeling
and Performance Analysis

Christos G. Cassandras /

University of Massachusetts, Amherst

An Introduction to Fiber Optic Systems
John P. Powers / Naval Postgraduate School

Practical Software Engineering
Stephen R. Schach / Vanderbilt University

Software Engineering, Second Edition
Stephen R. Schach / Vanderbilt University

Introduction to Applied Statistical

Signal Analysis

Richard Shiavi / Vanderbilt University

High Speed Communications Networks
Pravin Varaiya and Jean Walrand /

University of California, Berkeley
Communications Networks:

A First Course

Jean Walrand / University of California, Berkeley
Jacob A. Abraham / University of Texas at Austin

Leonard A. Gould / Massachusetts Institute
of Technology

Frederic J. Mowle / Purdue University
James D. Plummer / Stanford University

Stuart C. Schwartz / Princeton University

The following
are registered
trademarks:

Access

ADF

ADW
Aide-de-Camp
Analyst /Designer
Bachman Product Set
Battlemap

Bull
CA-Tellaplan
CCC

Demo 11

Excel
Excelerator
Focus
Foundation
FoxBASE

Guide
Hewlett-Packard
Honeywell
Hypercard

IBM

IMS /360
Informix

ISTAR

Lotus 1-2-3

Macintosh
MacProject
Method /1
MS-DOS

MVS /360
Natural

Nomad

0S /360

0S /370
OS/VS2
Powerhouse
RAMIS-II
Rational
SoftBench
Software through Pictures
SQL

SUN

System Architect
Teamwork

The Design Machine
UNIX

VAX

Verdix

VM /370

VMS

Preface

“...a software product is a model of the real world, and the real
world is constantly changing.”

(Software Engineering, First Edition, 1990, page 9)

When I wrote those words explaining why change is an inherent part
of software engineering, I did not realize that change is also an inherent part of
software engineering textbooks, and for the same reason. In the three years
since the first edition was published, there have been major changes in the
software world. In particular, the object-oriented paradigm is no longer a
curiosity for the elite few, but is now being used all over the world. Users are
reporting that when products are designed in terms of objects, maintenance
costs are reduced and ease of reuse of software components is promoted. As
part of the move to object-oriented techniques, products are being implemented
using object-oriented languages such as C++.

The U.S. Department of Defense language Ada is considerably less
widely used than was anticipated in 1990. This is largely a consequence of the
so-called Peace Dividend; less defense-related software is being developed. But
it was also believed that Ada would be widely used in the nondefense sector.

Preface

Xxii

This has not happened, probably because Ada is not an object-oriented lan-
guage. Instead, C++ is the language of the future.

The software process is being closely examined, partly as a result of
the efforts of the Software Engineering Institute (SEI) at Carnegie-Mellon
University. More and more software organizations are using the capability
maturity model (CMM) in order to improve their software process and thereby
boost productivity. An integral part of this is the use of metrics to enable
software developers to understand what is happening within their organizations.
Thus software metrics are also becoming increasingly important.

A number of other topics that used to be of secondary importance
are now major foci of software engineering interest. These include CASE tools
(especially integrated CASE) and software reuse. The hope is that use of these
technologies will increase productivity within those organizations that make use
of them.

All these changes are reflected in the second edition of Software
Engineering. In particular, the book is process-oriented, that is to say, a
considerable effort has been made to arrange the material in a format that more
closely reflects the process orientation of modern software engineering. The
material is presented phase-wise. For example, Chapters 9 and 10 contain all
the material on the design phase, including design methods, design testing,
design reuse, metrics for the design phase, CASE tools for the design phase,
and so on.

Notwithstanding the emphasis on modern developments and tech-
nology, the fundamental principles stressed in the first edition are stressed just
as firmly in this edition. The first principle is analysis and comparison. A variety
of techniques are described for each phase of the process; these techniques are
then carefully contrasted. Because of the plethora of present-day software
engineering techniques, it is important to select an appropriate one for the task
at hand. The emphasis in this book on analysis and comparison alerts the reader
to the need for careful choice and provides him or her with criteria for choosing
wisely. The second principle is that the results of experiments in software
engineering constitute a powerful tool for determining which techniques are to
be preferred for a given situation. The third principle is that maintenance is a
vital phase of the software process because, on average, maintenance consumes
two-thirds of the total software budget. Maintenance must be planned for
throughout the software development process. The fourth principle is that
testing is not a phase that is performed just before the product is delivered to
the client, nor is it an activity that is performed at the end of each phase of the
software process. Instead, testing must be performed continually throughout the
entire software development and maintenance process. The fifth principle is
that all the documentation relating to a given phase of the software process
must be completed before the next phase is started. In addition, the documenta-

xxiii

tion must constantly be updated during maintenance, thus ensuring that the
documentation always reflects the current version of the software.

The book is still essentially language-independent. The few code
examples are in C++, rather than Ada. To be more precise, wherever possible
the “C subset of C++ ” has been used. In addition, care has been taken to use
as few C idioms as possible so that the material can also be understood by
readers with little or no knowledge of C. The only place where C++ (rather
than C) is employed is Chapter 9, and detailed explanations of specific C++
constructs have been provided there. Ada is used in one chapter near the end of
the book entitled “Ada: A Case Study in Software Engineering.” This material
may be omitted if the instructor feels that it is inappropriate.

In this edition, additional material has been presented on those
topics that have grown in importance since the first edition appeared, such as
CASE tools, the spiral model, reuse, and metrics. New topics introduced
include joint application design (JAD), the capability maturity model (CMM),
and the formal specification language Z. At the same time, in order to keep the
length of the book approximately the same as that of the first edition, a few
topics (such as PAISLey) presented in the first edition have been omitted from
this new edition. I feel that it is important that a textbook can be used in its
entirety—presenting an instructor with twice as much material as he or she can
conveniently cover in a course is generally counterproductive.

With regard to prerequisites, it is assumed that the reader is familiar
with one high-level programming language such as Pascal, C, BASIC, COBOL,
or FORTRAN. Although some of the examples are in C, no previous knowl-
edge of C is needed. In addition, the reader is expected to have taken a course
in data structures and to have acquired the familiarity with computers that is
gained through carrying out programming exercises.

How the Second Edition Is Organized

This book is divided into three parts. The first part is introductory.
The reader is introduced to software engineering and to the software process.
An overview is given of tools such as stepwise refinement, cost—benefit analysis,
and computer-aided software engineering (CASE) tools. Introductions to met-
rics and testing are also given.

The second part of this book is devoted to the various phases of the
software process, from requirements through to maintenance. For each phase in
turn, methods for performing that phase are described, as are testing techniques
and CASE tools for that phase. Metrics and management techniques for each
phase are also presented.

Preface

Preface

XXiv

Software Engineering is designed to be used in a project-oriented
course. The third part of this book accordingly consists of three chapters that
can be presented while the class is completing the term project. Without these
chapters, the instructor would have little or no material to teach during the final
weeks while the last part of the project is being completed. The third part of
Software Engineering consists of topics that do not directly relate to the software
process, and can therefore be taught at the end of the course in parallel with
the students finishing their project work.

As before, each chapter is concluded with a chapter review, sugges-
tions for further reading in that area, a set of problems, and references for that
chapter; the Bibliography for the book as a whole is presented at the end of the
book. A new addition is Appendix B which contains a list of journals and
conference proceedings that contain important articles on software engineering
topics.

The Problem Sets

With regard to the problems included in this edition, each time I
taught a course using the first edition, I gave the students a new problem set.
For this edition I have selected what I consider to be the most interesting of the
problems selected from the first edition and the new problem sets. I have also
included my favorite among the various term projects I have set for my students.

As in the first edition, there are three types of problems. First, each
chapter has a number of problems intended to highlight key points. These
problems are self-contained; there is no need to visit a computer store to
determine the specifications of various machines or to contact computer profes-
sionals to obtain information such as software productivity data. In general,
computer salespeople and software professionals have neither the time nor the
inclination to serve as sources of information for solving problems in textbooks,
and students are not comfortable contacting busy individuals in order to obtain
the data they need. For these reasons, the technical information for all of the
problems can be found in this book.

Second, there is a software term project. Software engineering is a
practical discipline, and purely theoretical courses are usually not very effective,
so a practical project has been included in this book. Because so much software
today is produced by teams rather than by individuals, the term project is
designed to be solved by students working in teams of 3, the smallest number of
team members that cannot confer over a standard telephone. The term project
comprises 15 separate components, each tied in to the relevant chapter. For
example, design methods is the major topic of Chapter 10, so in that chapter the
component of the term project is concerned with designing the software for the

term project. By breaking up a large project into smaller, well-defined pieces,
the instructor will be able to monitor the progress of the class more closely. The
project is concerned with software for the Martha Stockton Greengage Founda-
tion as described in Appendix A, but the structure of the project is such that the
instructor may freely apply the 15 components to any other project of his or her
choosing.

Because this book is designed for use by graduate students as well as
upperclass undergraduates, the third type of problem is based on research
papers in the software engineering literature. In each chapter an important
paper has been chosen. The student is asked to read the paper and to answer a
question relating to the contents of the paper. Of course, the instructor is free
to assign any other research paper; to assist in this regard, the For Further
Reading section at the end of each chapter includes a wide variety of relevant
papers.

The Instructor’s Manual contains detailed solutions to all the prob-
lems, as well as to the term project. The Instructor’s Manual also contains
transparency masters for all the figures in this book. The Instructor’s Manual is
available from Richard D. Irwin, Inc., Homewood, IL 60430.

Acknowledgments

I am indebted to those who reviewed this edition, including Kiumi
Akingbehin, University of Michigan, Dearborn; Phil Bernhard, Clemson Uni-
versity; James Cardow, Air Force Institute of Technology; Betty Cheng, Michi-
gan State University; Bob Goldberg, IBM; Ron New, Johns Hopkins University;
Peter Jones, University of Western Australia; Everald E. Mills, Seattle Univer-
sity; and Fred Mowle, Purdue University.

It has been a real pleasure to work on a third book with Howard S.
Aksen, publisher, editor, and friend. His unrivaled expertise has guided the
project from start to finish.

Finally, I should like to thank my wife, Sharon, and our children,
David and Lauren, for their understanding and forbearance whenever book
deadlines clashed with family commitments. This book is dedicated to them,
with love.

Stephen R. Schach

Preface

Preface

Part One

Chapter 1
1.1
1.2
1.3
1.4
1.5
1.6

Chapter 2
2.1
2.2

Contents

Introduction to the Software Process

Scope of Software Engineering
Historical Aspects

Economics Aspects

Maintenance Aspects
Specification and Design Aspects
Team Programming Aspects
Terminology

Chapter Review

For Further Reading

Problems

References

Software Production and Its Difficulties
Client, Developer, and User

Requirements Phase

2.2.1 Requirements Phase Testing

(%)

—
N0 3 W

15
17
17
18
19

23
25
26
27

Contents

23
24
235
2.6
2.7
2.8

2.9
2.10

Chapter 3
3.1
32

33

34
3.5

3.6
3.7

Xii

Specification Phase

2.3.1 Specification Phase Testing
Planning Phase

2.4.1 Planning Phase Testing
Design Phase

2.5.1 Design Phase Testing
Implementation Phase

2.6.1 Implementation Phase Testing
Integration Phase

2.7.1 Integration Phase Testing
Maintenance Phase

2.8.1 Maintenance Phase Testing
Retirement

Problems with Software Production:
Essence and Accidents

2.10.1 Complexity

2.10.2 Conformity

2.10.3 Changeability

2.10.4 Invisibility

2.10.5 No Silver Bullet?

Chapter Review

For Further Reading

Problems

References

Software Process Models
Build-and-Fix Model
Waterfall Model

3.2.1 Analysis of the Waterfall Model

Rapid Prototyping Model

3.3.1 Integrating the Waterfall and
Rapid Prototyping Models

Incremental Model

3.4.1 Analysis of the Incremental Model

Spiral Model

3.5.1 Analysis of the Spiral Model
Comparison of Process Models
Capability Maturity Model

Chapter Review

For Further Reading

Problems

References

27
29
29
30
31
32
33
33
33
34
35
35
36

36
38
40
40
41
42
44
44
45
46

47
48
49
52
54

56
57
58
60
65
66
67
70
70
71
72

Chapter 4
4.1

42
43
4.4

4.5

4.6
4.7
4.8

Chapter 5
5.1

5.2

5.3
5.4

55

xiii

CASE and Other Tools of the Trade

Stepwise Refinement

4.1.1 Stepwise Refinement Case Study

Cost—Benefit Analysis

CASE (Computer-Aided Software Engineering)

4.3.1 The Scope of CASE

Software Versions

4.4.1 Revisions

4.4.2 Variations

Configuration Control

4.5.1 Configuration Control during Product Maintenance
4.5.2 Baselines

4.5.3 Configuration Control during Product Development
Build Tools

Productivity Gains with CASE Tools

Software Metrics

Chapter Review

For Further Reading

Problems

References

Testing Principles

Quality Issues

5.1.1 Software Quality Assurance (SQA)
5.1.2 Managerial Independence
Nonexecution-Based Testing

5.2.1 Walkthroughs

5.2.2 Managing Walkthroughs

5.2.3 Inspections

5.2.4 Comparison of Inspections and Walkthroughs
5.2.5 Metrics for Inspections
Execution-Based Testing

What Should Be Tested?

5.4.1 Utility

5.4.2 Reliability

5.4.3 Robustness

5.4.4 Performance

5.4.5 Correctness of Specifications
Testing versus Correctness Proofs

5.5.1 Example of a Correctness Proof
5.5.2 Correctness Proof Case Study
5.5.3 Correctness Proofs and Software Engineering

75
75
76
82
83
84
85
85
86
87
90
90
91
92
93
93
95
95
96
98

101
102
102
103
103
104
105
106
109
109
110
110
112
112
113
113
114
116
116
120
122

Contents

Contents

5.6
5.7

Part Two

Chapter 6
6.1
6.2
6.3
6.4
6.5
6.6

6.7
6.8
6.9
6.10
6.11

Chapter 7
71
7.2
7.3

7.4
75

7.6
7.7
7.8

7.9
7.10

Xiv

Who Should Perform Execution-Based Testing?
When Testing Stops

Chapter Review

For Further Reading

Problems

References

The Phases of the Software Process

Requirements Phase

Rapid Prototyping

Human Factors

Rapid Prototyping as a Specification Technique
Reusing the Rapid Prototype

Other Uses of Rapid Prototyping
Management Implications of the

Rapid Prototyping Model

Experiences with Rapid Prototyping
Joint Application Design (JAD)

Testing during the Requirements Phase
CASE Tools for the Requirements Phase
Metrics for the Requirements Phase
Chapter Review

For Further Reading

Problems

References

Specification Phase

The Specification Document

Informal Specifications

7.2.1 Informal Specifications Case Study
Structured Systems Analysis

7.3.1 Structured Systems Analysis Case Study
Other Semiformal Methods

Finite State Machines

7.5.1 Finite State Machines Case Study
Petri Nets

7.6.1 Petri Net Case Study

Z

7.7.1 Analysis of Z

Other Formal Methods

Comparison of Specification Methods
Testing during the Specification Phase

124
126
127
127
128
130

135

137
138
139
141
144
146

147
149
150
151
151
153
154
154
155
155

157
158
159
160
162
162
170
171
173
178
182
185
187
188
189
190

7.11
7.12

Chapter 8
8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8

Chapter 9
9.1
9.2

9.3

XV
CASE Tools for the Specification Phase 191
Metrics for the Specification Phase 192
Chapter Review 192
For Further Reading 193
Problems 194
References 196
Planning Phase 203
Estimating Duration and Cost 204
8.1.1 Metrics for the Size of a Product 205
8.1.2 Methods of Cost Estimation 210
8.1.3 Intermediate COCOMO 212
8.1.4 Tracking Duration and Cost Estimates 216
Components of a Software Project Management Plan 216
Software Project Management Plan Framework 219
IEEE Software Project Management Plan 220
Training Requirements 223
Documentation Standards 223
CASE Tools for the Planning Phase 224
Testing during the Planning Phase 227
Chapter Review 227
For Further Reading 228
Problems 229
References 231

Design Phase. I: From Modules to Objects 235

What Is a Module? 235
Cohesion 240
9.2.1 Coincidental Cohesion 241
9.2.2 Logical Cohesion 241
9.2.3 Temporal Cohesion 242
9.2.4 Procedural Cohesion 243
9.2.5 Communicational Cohesion 243
9.2.6 Informational Cohesion 244
9.2.7 Functional Cohesion 245
9.2.8 Cohesion Example 246
Coupling 247
9.3.1 Content Coupling 247
9.3.2 Common Coupling 248
9.3.3 Control Coupling 250
9.3.4 Stamp Coupling 251
9.3.5 Data Coupling 252

9.3.6 Coupling Example 252

Contents

Contents

Chapter

9.4

9.5
9.6
9.7
9.8

9.9

9.10
9.11

10

10.1
10.2
10.3

10.4
10.5
10.6

10.7
10.8

10.9

10.10
10.11
10.12
10.13
10.14
10.15

XVi

Data Encapsulation

9.4.1 Data Encapsulation and Product Development
9.4.2 Data Encapsulation and Product Maintenance
Abstract Data Types

Information Hiding

Objects

Reuse

9.8.1 Impediments to Reuse

Reuse Case Studies

9.9.1 Raytheon Missile Systems Division

9.9.2 Toshiba Software Factory

9.9.3 NASA Software

9.9.4 GTE Data Services

Reuse and Maintenance

Objects and Productivity

Chapter Review

For Further Reading

Problems

References

Design Phase. II: Design Methods
Design and Abstraction

Process-Oriented Design

Data Flow Analysis

10.3.1 Data Flow Analysis Case Study

10.3.2 Extensions

Transaction Analysis

Data-Oriented Design

Jackson System Development (JSD)

10.6.1 Overview of Jackson System Development
10.6.2 Why JSD Is Presented in This Chapter
10.6.3 Jackson System Development Case Study
10.6.4 Analysis of JSD

Methods of Jackson, Warnier, and Orr
Object-Oriented Design (OOD)

10.8.1 Object-Oriented Design Case Study
Detailed Design

Comparison of Process-, Data-, and Object-Oriented Design
Difficulties Associated with Real-Time Systems
Real-Time Design Methods

Testing during the Design Phase

CASE Tools for the Design Phase

Metrics for the Design Phase

254
256
259
262
265
268
271
272
273
273
275
276
277
278
279
280
281
282
284

289
290
291
291
292
297
299
302
302
303
305
305
314
316
317
318
321
324
326
328
329
330
331

