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Preface to the Second Edition

My book, Approximation of Functions (Holt, Rinehart and Winston),
has been out of print for a number of years. But a considerable demand
for it still remains which, I hope, is in some measure justified. A Chinese
translation of the book has appeared recently.

I have therefore been happy to accept an offer by Chelsea Publishing
Company to publish a second edition of the book. The changes are
minimal. Some errors have been corrected and a faulty result about
rational approximation has been replaced by a beautiful theorem of my
friend, the late Geza Freud. I am grateful to D. D. Stancu, Cluj, Rumania
for many corrections.

G. G. Lorentz



Preface to the First Edition

My purpose has been to write an easily accessible book on the approximation
of functions that is simple and without unnecessary details, and is also complete
enough to include the main results of the theory, including some recent ones.
In some cases (for example, Chapter 7, saturation classes), this has been made
possible by restricting discussions to a few representative theorems from a
field. The leitmotiv of the book is that of the degree of approximation. Only
Chapter 2 (Chebyshev’s theorem and related results), Chapter 3 (auxiliary
results and notions), and Chapter 11 do not depend on this idea. The justification
of the latter chapter lies in its coverage of some applications of entropy, which
are significant because of Kolmogorov’s theorem.

Except for a few sections, only functions of a real variable have been treated.
The beautiful results of Runge, Bernstein, Walsh, Mergeljan, Dzjadyk, and
others in the complex domain remain outside the scope of this book.

The book can be used as a textbook for a graduate or an advanced under-
graduate course, or for self-study. Notes at the end of each chapter give
information about important topics not treated in the main text. Problems
serve as illustrations; some of them are not easy. It was felt that it is more useful
to solve one difficult problem than several easy ones. The Bibliography is not
all-inclusive. It has been limited to works that can be expected to be particularly
useful for the reader, and to others of utmost historical interest.

I owe thanks to my friends, colleagues, and students, who have helped me
with my work. Above all, I must thank Professor E. Hewitt, the editor of this
series, Professors G. T. Cargo, G. F. Clements, H. S. Shapiro, Messrs. J. Case
and J. T. Scheick, all students in my class on approximation theory, and the
OSR of the U.S. Air Force, whose grant supported my work. I would be grateful
for any suggestions that readers may send to me.

G. G. Lorentz
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[ 1]
Possibility of Approximation

1. Basic Notions

The problem of linear approximation can be described in the following way:
Let @ be a set of functions, defined on a fixed space A. If a function fon 4 is
given, can one find a linear combination P = @y, + *** + a,¢,, $;: €D,
which is close to the function f? Two preliminary problems arise: We must
select the set @, and also decide how the deviation of P from f should be measured.

We begin with the second question. Let 4 be a compact Hausdorff topo-
logical space,! and let C = C[A] be the set of all continuous real functions on 4.
The set C'is a linear space over the reals: sums f + g and products af with real a
and f, g € C belong to C and satisfy the axioms of a linear space. The supremum

Ifll= sup | f() | (1)

is attained for all functions f e C; thus, || f| = max | f(x) | . This supremum
has the following properties, which define a norm on C[A]:

If1=0; [fll=0, ifandonlyif f=0; )
lafll=lal:Ifl; €)
If+eli<Ifli+legl- 4)

Thus, C is a normed linear space. Similarly, the space of all continuous complex
functions f on A with norm (1), which is also denoted by C[4], is a normed
linear space over the complex number field.

Unless something to the contrary is said, all our functions and scalars will
be real. The convergence f, — f in the norm of C, that is, || f, — f|—0 as
n— o0, is equivalent to the wuniform convergence of f,(x) to f(x) for all x € 4.
It follows from this interpretation that the space C is complete: If £, is a Cauchy
sequence (that is, || f, — fm || — 0 for 7, m — o0), then f, converges to some
element f of C:

/o —F1I—0. ®)

! Without essential loss, the reader can substitute for this, here and in the remainder
of the book, a compact metric space, or even a compact subset of a euclidean space.

1



2 POSSIBILITY OF APPROXIMATION

Complete normed linear spaces are called Banach spaces. Many types of Banach
spaces are important in the theory of approximation; for example, the spaces
L? = L"[a, b], p > 1, with the norm

if={f 1 as]”

However, approximation in the spaces C remains both the most interesting
and the most important special case (if one excludes the theory of orthogonal
polynomials in the space L?), and this book is devoted almost entirely to it.
The following definitions apply to any Banach space X with elements f
and a distinguished subset @. We call f approximable by linear combinations

P = a1, + aypy + *** + aydy, b; €D, a; real, (6)

if for each € > 0 there is a P with ||f — P | < e. Often, @ is a sequence:
¢1 ’¢2 » Y ¢n y T Then

E(f)=BXH) = inf If — (@b + =+ adn) | (7)

......

is the nth degree of approximation of f by the ¢, . If the infimum in (7) is attained
for some P, this P is called a linear combination of best approximation. There is
an exception to this notation: If the P are algebraic or trigonometric polynomials
of a given degree, then # in (7) will refer to the degree of the polynomials rather
than to the number of functions ¢, .

For the space C[a, b] of continuous real functions on [, b], a natural
sequence @ is given by the powers 1, x, ---, x®, --- . In this case, the linear com-
binations of the first # + 1 functions are the algebraic polynomials of degree n:
P,(x) = ay + ayx + -+ + a,x™. In this definition we do mot require that
a, 7 0. A similar remark applies to some later definitions.

Another important compact set K is the additive group of real numbers
R = (—o0, +0), taken modulo 2m; the distance | x — x' | between x, ¥’ € K
is the minimal distance between the representations of x, ' in R. For obvious
reasons, we can call K the unit circle. This K is a metric space with the distance
| & — &' | . We shall follow the practice of identifying functions f € C* = C[K]
with the continuous 27-periodic functions on R. For such functions, [ fdx
is the integral of f over any interval of R of length 27. A function f € C* does not
necessarily have an indefinite integral F in C*, for _[ f(t) dt is not necessarily
periodic. Clearly, an F' € C* exists if and only if f has mean-value zero; that is, if
(1/27) f fdt = 0. In this case, F(x) = const + f fdt. Among these F there is
exactly one with mean-value zero. Iterating this, we see that for each p=1,2;-

a function f € C* with mean-value zero has a family of pth indefinite 1ntegrals
which depends upon one additive constant. We shall call each of these integrals a
pth indefinite integral of f.
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A tool of approximation for functions f € C* is the following set of frigo-
nometric polynomials:

To(x) = ‘;—0 + a,cos x + by sinx + -+ + a, cos nx + b, sin nx. . (8)

The polynomial (8) is said to have degree n. It is even (or odd) if only cosines
cos kx, k =0, ---, n (or sines) appear in the representation. Simple trigono-
metric formulas imply that the product of two trigonometric polynomials of
degrees n and m is equal to a trigonometric polynomial of degree n + m.

In analogy with these two cases, the linear combinations (6) will also
sometimes be called polynomials.

In the present chapter, we shall discuss the possibility of approximation
of functions by polynomials. In Chapter 2, properties of polynomials of best
approximation will be treated.

2. Linear Operators

The following theorem (which will be proved in Sec.3) is due to
Weierstrass [103]:

Taeorem 1. Each continuous real function f on [a, ] is approximable by
algebraic polynomials: For each € > 0 there is a polynomial P, (x) = i a;x*
with ’
| f(x) — Pu(x) | <6, a<<x<b (1)
The most natural way to prove a theorem of this type is to give an explicit
formula for the polynomial P,(x). In terms of f, this formula is usually linear.
A function g =L(f) from a Banach space X into a Banach space Y is
called a linear operator if it satisfies the conditions

L(f+f) =L(f) +L(f);  L(af) = aL(f) @

for all f, f' € X and all real a. If Y is the real line R, L is called a kinear functional.
A linear operator L is called bounded if

ILANI<MIfl, feX (©)

for some positive constant M. In this case, the infimum of all M for which (3)
is true is still an admissible M. This minimal M is called the norm of L, and is
denoted by ||L || . From this definition it follows that

IL || = sup ”ﬁ(ff“) I = sup HL (ﬁ) ” = sup [[L(f)]. 4)

f=0 lI7ll=1

A bounded linear operator is continuous: From f, — f (in the norm of X),
it follows that L( f,) — L( f) (in the norm of Y), since

ILCfn) =LA N< NL N - 11 fo — I



4 POSSIBILITY OF APPROXIMATION

In the case X = C[A], we can distinguish positive elements of C: We
write f > 0 if f € C and f(x) > 0 for all x € 4. An operator L that maps C into
itself is called a positive operator if it transforms each positive element f into a
positive element g. For a positive linear operator, we have L( f) < L(g)if f < g
(that is, if g — f > 0); also, | L(f) | < L(|f|), where | f| is the function with
values | f(x) | . An operator of this type is always bounded: From

L) | <L D) <L flle) = £ | L(e)
(here e is the constant function e(x) = 1), it follows that
LD I<ILE -1
so that
ILI =Ll -

For the value of L( f) at x € A, we write L( f, x).

EXAMPLES

1. Bernstein Polynomials. For a function f defined on [0, 1], let

B.(f, %) :2‘5(:) (1 —x)"-"f(%), n=0,1,. ()

Clearly, this is a positive linear operator which maps C[0, 1] into itself. By the
binomial formula,

Be®) = 2o =1 pule) = (}) U =% ©

and hence || B, || =1, forn =0, 1, -+ .

2. Fourier Series. Let f be a 2m-periodic, integrable function. The coef-
ficients of its Fourier series,

%’ + E (ay, cos kx + b, sin kx), @)
k=1
are given by the formulas
1 1 .
@ = — f_ﬂf(t) cos ktdt, b = - f_"f(t) sin ktdt. 8)

For example, the finite sum 1(8), augmented by zero terms, is the Fourier
series of the trigonometric polynomial 7, . We consider the nth partial sum s,
of the series (7). A standard computation gives

5 t—x
. sin(2n + 1) ——
s =slfi®) = [ £ == 24 ©)

2




LINEAR OPERATORS 5
To obtain this, one writes s, = %, + #; + *** + u, , where
14 t) dt u ——l—fﬂ f(t)cos k(t — x)dt, k=1,2
uo—;f—"2() ) k’ﬂ_ . ) y Ly seey

and applies the formula

L teosat o b oosna = RZEDED _p oy o)

which is obtained by multiplying both sides with 2 sin («/2). In the same way,
by means of the formula
o sin®(naf2)

.o« .3 .
sm7+sxn§a+"'+Sm(2"—1)7—m)_' n

we obtain a representation of the arithmetic mean o, of the s,:

— 2
sin alt— i)

m—alfin) =2t | — 2| 1)

n 2mn J_,

Thus, o,(f) is a sequence of positive linear operators, mapping C* into itself.
We have || g, || = 1, since o,(e) = e (for the function e(x) = 1, all 5,(x) = 1).
The operators s,(f), f € C* are also linear, but not positive. It follows from the
definition of s, and o, that for each f, both s,( f, ) and o,( f, x) are trigonometric
polynomials of degrees # and n — 1, respectively. The norm of s,( f) is given by
the following theorem.?

TrHEOREM 2 (Fejér). The norm || s, || of the operator s,( f) is equal to

4, — % f" sin (27 + 1) (¢/2)

2 sin (t/2)
also, the norm of s,(f, x), for each fixed x, considered as a linear functional
from C* to R, is equal to (13).

Proof. Since D,(t) has period 2,

4
dt :Flogn—{-O(l); (13)

[l DI <UFl [ 1Dt — %) 1dt = 4,171

2 We use the following notation: If u, and v, > 0 are functions of 2, we
write (a) u, = O(v,) if | u, | < Muv, for some constant M; (b) u, = o(v,) if u./v, — 0
as n— 00; (c) uy, ~v, if uy/v, -1 as n — o, and (d) u, ~ v, if u,/v, is contained
between two constants m, M, where 0 < m < M.
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This inequality shows that the functionals as well as the operator s, have norms
not exceeding A, . To show that these norms are actually equal to 4, , it is
sufficient to find, for given ¥ € K and € > 0, a continuous function g for which
lgll =1 and

8s®) =3 | 8O Dut — ) de > 4, — e (14)
For the function gy(¢) = sign D, (¢ — x), we have
l T
— | ey Dt —wdt =

But g, is not continuous; it has jump discontinuities at the finitely many points
t, of [— m, =], where D,(t — x) changes sign. We surround each 7, by a small
interval I, = (¢, — 8, ¢, + 8) and change g, on each I, so as to obtain a continu-
ous function g, which has values between — 1 and + 1 everywhere and coincides
with g, outside the I,. The difference between the integrals _|' gD dt and
I _&D,dt does not exceed 2 [_| D,(x — ) | dt, where E is the union of the
intervals I, . If & is sufficiently small we have (14).

To obtam an asymptotic formula for 4,, , we write 4, = 71 _[ 2| Dy(t) | dt,
since D,(Z) is even. The function under the integral sign is equal %o

t . 2 t 23
Icot—smnt-l—cosnt’=,—smnt-{—(cot——T)smnt-i—cosntl.

2 t 2

Since cot # — »~! is bounded in (0, 7/2), we have
2 (7|sinnt |
4, _;fo e+ o).
The integral of ¢! | sin nt | over (0, 7/n) is bounded, since | sin n¢ | < nt. Thus,

2 nd pesDaim | sin gt |
42 2" a4+ 01
m k=1 J‘kﬂ/ﬂ t + ( )

n—1 1

2 T i 9+ O):

2 w/n
= — f sin nt
m™Jy

Let S(¢) denote the last sum. For 0 < ¢ << m/n, S(¢) lies between

S(0) = na (1 DI PP ) and  S(afn) = S(0) + O(n).

n—]

If we use the facts that

1 1
l—f—§+---+n—_T=10gn+O(l),
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and that
w/n
f sin ntdt = 3 N
o n
we obtain:
4
A, = g log n 4+ O(1). | (15)

3. Approximation Theorems

The operator s, is not suitable for the uniform approximation of arbitrary
continuous functions, as we shall see in Chapter 6. However, both B, and o,
can be used for this purpose.

It has been observed by Bohman and Korovkin [7] that for a sequence L,
of positive linear operators, convergence often can be established quite simply
by checking it for certain finite sets of functions f. Let 4 be a compact Hausdorff
topological space (with at least two points). Let f;, -+, f,, be continuous real
functions on A that have the following property3:

there exist continuous real functions a,(y), y € 4,7 = 1, **+, m such that
m

P,(x) = D, a(y) fix) (1)

is positive, and equal to zero if and only if x = y.

Treorem 3. If the functions f;, -, f,, satisfy (1) and if L, is a sequence of
positive linear operators that map C[A] into itself and satisfy

L.(f;,x)— fi(x) uniformly for xe€ A4, t=1,-m, 2)
then

L,(f, x) > f(x) uniformly in x for each fe C[A4]. 3)

Proof. We begin with some properties of the functions P(x) = f‘, a; f{x).

There exists a P with P(x) > 0 for all x € 4: if y, # y, are two pointslof A, we
can take P = P, + P,, . From (2) we have L,(P, x) — P(x) uniformly in »
for each P with constant coefficients. We also have

L(P,,3) = 3 a() Ll fir3) ~ 2,0 fi3) = O,

i=1

# The assumption that a,(y) are continuous could be omitted, but it simplifies the
proof of Theorem 3.
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and the convergence is uniform in y because the a,(y) are bounded. Finally, for
some constant M, > 0, || L,(e) || < M, . This follows from

L,(e, x) < aL,(P, x) — aP(x),

where a > 0 is taken so that 1 = e(x) < aP(x), x € A.
Lemma. Let f, € C[4], y € 4, be a family of functions for which f,(x) is a
continuous function of the point (x,y) € 4 X 4 and f(y) =0 for all y € 4.
Then

L.(f,,y)—0 uniformly in y. 4)

Proof. Consider the ‘“diagonal” set B = {(y,y)} in 4 X A and some € > 0.
Each point of B has a neighborhood U in 4 X A for which | f,(x) | < e if
(x, ¥) € U. The union G of all these U is an open set; its complement F is com-
pact. Let

m = min P(x)>0, M= max |f(x)].

For all x, y we have

k) | < e+ 2 P, )

In fact, | f,(x) | does not exceed the first term on the right if (x, ¥) € G, nor the
second term if (x, y) € F. From (5) we derive

[L(fy,9) | <eLn(e,y) + % w(Py s Y)

M
< MOE + ;Ln(Pv ’y) < (Mo + l) €,

for all large n.
Now the proof of the theorem can be completed easily. If fe C[4] is

given, we put

Fl®) =fx) — % P(w).

By the lemma,

L.(fy) — %LAP »¥)—>0,

and since L,(P, y) — P(y), we obtain (3). |
For example, if 4 = [a, b], the system f; = 1, f, = x, f, = 2 satisfies the
condition (1). We can take

Px)= —xP2=yH —2f+fs.
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Theorem 3 allows us to check the convergence of certain operators with a
minimum of computations. We begin by proving Theorem 1. The linear sub-
stitution ¢ = (x — a)/(b — a) reduces the interval a < x << b to the interval
0 < t < 1. Thus, Theorem 1 follows from

TueoreMm 4. If the function f is continuous on [0, 1], then

lim B,( f, x) =f(x) uniformly for 0<x<. (6)

Proof. For the polynomials p,,; of 2(6), we have

3 kol = 3k (3) #1 —

= nx jz:;o (n 7 1) (1 — x)n 1= = na; (7)
Ek(k — 1) pusx) = n(n — 1) a2 7:2_; ( 7 2) 21 — )2t = n(n — 1) 22,
so that
g E2p,(x) = n2x? + nx(l — x). (8)

Formulas 2(6), (7), and (8) mean that the functions f; = 1, f, = «, and f; = &2

have as their Bernstein polynomials, respectively, 1, x, and &% + n~1x(1 — x),

for n > 2. Conditions (1) and (2) hold, and (6) follows from Theorem 3. i
Useful in connection with Bernstein polynomials are the sums

T, () = 2 (k — o) puale), =0, 1, . )

Using formulas (7) and (8), we see that T,,, = 1, T,,; =0, T}, = nx(1 — x). In
order to compute the 7, for » > 2, it is convenient to use the recurrence rela-
tion

Tn.'r+1 = x(l - x) (T;rr + ”rTn.r—l)v r=1, (10)

which follows from (9) by differentiation, if one notices that

From (9) we obtain

Tno =1, Tnl =0, Tnz = nX, Tns = ”(1 - 2x) X,
Toe = 372X% — 20X 4+ nX(1 — 2%, X — x(1 — x). (12)



