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Foreword

In publishing this supplementary volume to Advances in Electronics and
Electron Physics, it is useful to give some background. A few years ago we
became aware of the importance of Walsh functions for telecommunications.
Our early contact with Professor Harmuth resulted in a critical review
published in the 36th volume (1974) of our regular series. Two years later a
second review on a related subject followed and, at the time of writing this
Edreword, it is being printed in the 41st volume of the regular series. Other
discussions followed, and it is a great pleasure to present here his monograph
on “Sequency Theory: Foundations and Applications.”

Dr. Harmuth’s Preface traces very briefly the early history of sequency
theory. The initial disappointments of its proponents, at the hand of its
opponents, are not surprising. Many of us, who tried to introduce a new
concept or a new process, are only too familiar with resistance to new ideas.
The important aspect is that good ideas survive and bring forth such results
as are reported here.

We hope that this monograph will find as much favor with the readers
as our earlier ones.

L.. MARTON
C. MARTON
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Preface

Sequency theory started about a decade ago. An adverse climate for
scientific research prevailed during most of its infancy, yet the theory was
advanced to the practical level in television image processing, in the genera-
tion of moving images by means of sound waves underwater, and in radar.
These three lines of practical development will be emphasized. The theoretical
developments have become too varied to be covered in one book; hence,
the developments discussed are those which appeared to be most stimulating
or most controversial, depending on one’s point of view.

The difficulties that have to be overcome by a new theory and the rapid
progress of sequency theory are best illustrated by the advancement in the
area of nonsinusoidal electromagnetic waves. At the first scientific meeting
on sequency theory in May 1968 at the Research Institute of the Deutsche
Bundespost in Darmstadt, West Germany, the very notion of using non-
sinusoidal electromagnetic waves was roundly denounced, but in January
1976 the first useful application in radar was demonstrated by J. Chapman.
The trail from ridicule to realization was blazed in eight years. The lively
discussion of May 1968 was preserved on magnetic tape by H. Hiibner of the
Deutsche Bundespost as a lasting record of the emotions aroused by a
new idea.

The bibliographies of K. Beauchamp and J. Bramhall, augmented by the
listing of very recent publications in this volume, give credit to the scientific
contributors to sequency theory. Credit for administrative and financial
support of sequency theory in general and the author in particular is due to
the following organizations and persons:

the Electromagnetic Compatibility Group of The Institute of Electrical
and Electronics Engineers, especially its officers N. Ahmed, W. E. Cory,
H..Randall, G. R. Redinbo, H. M. Schlicke, R. B. Schulz, R M. Showers,
L. W. Thomas, and J. C. Toler;
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Xiv PREFACE

various groups of the US Navy and its officers C. A. Bass, A. Berman,
M. A. Blizard, A. Cecelski, R. Golding, R. D. Matulka, A. E. Showalter,
J. Trimble, and R. W. Zeek;

the US Air Force Office of Scientific Research and its officers J. W.
Gregory and J. H. Rosenbloom;

the US Air Force Office of Scientific Research and its officers F. Rohde
and J. Hannigan;

personal thanks for continued support are due to R. Meister of The
Catholic University of America, and to V. Anderson, T. Caldwell, and
J. Hess of Undersea Research Corporation; to J. W. Bayless of A. A. Collins
Inc., and to H. Bergmann of the Deutsche Bundesmarine.
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Introduction

THE DoGMmA OF THE CIRCLE

The Greek philosopher Plato is credited with the introduction of the
dogma of the circle. It was expressed by Claudius Ptolemy as follows:' “We
believe that the object which the astronomer must strive to achieve is this: to
demonstrate that all the phenomena in the sky are produced by uniform and
circular motions.” The astronomical observations of the Greeks were accurate
enough to show that the planets were not moving on circles or on surfaces of
spheres, regardless of whether one assumed the Earth or the Sun as the center
of motion. Eudoxus, a disciple of Plato, used a superposition of rotating
spheres in an attempt to reconcile the observed data with the dogma of the
circle. Four spheres were needed for cach one of the five known plancts.”
three each for the Sun and the Moon. and one for the fixed stars. These 27
spheres proved unsatisfactory. Aristo-iz reduced the discrepancies between
theory and observation by using 54 spheres.

Claudius Ptolemy replaced the spheres by circles. The five planets. the
Sun, and the Moor moved arocund e Earth on primary circles called
deferents. Superimposed on each ¢ .orent was a secondary circle, calic !
epicycle, as shown in Fig. 6-1. Anotiior epicycle was superimposed on t:.
first epicycle, and so on. In modern language, we would say that the orbits
were represented by a superposition of circles. Ptolemy used 36 circles to

P >(\lzexp(|u‘7!=
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§ ‘epicycle
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\
Jexpiiwgt) |
X 1

!
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|
\

\ /
. . X . . \geferent Y
F1G. 0-1. Superposition of circles in astronomy and in N ;

< y
electrical communications.

~_ -

' A detailed account of the degma of the circle in astronomy is given by Koestler (1959).
German translations of the most pertinent Greek and Latin texts are collected in a book by
Zinner (1951).

? Mercury, Venus, Mars, Jupiter, and Saturn are visible to the unaided eye.



2 INTRODUCTION

represent the orbits of the Sun, the Moon, and the five planets. This was not
quite enough to fit the observed data, and better representations using more
circles were subsequently worked out. Nicholas Copernicus moved the
center of motion from the vicinity of the Earth to the vicinity of the Sun,
but he retained the representation of orbits by a superposition of circles.
The orbit of Mercury required eleven circles, Venus and Earth nine circles
each, the Moon four circles, and the remaining planets five circles each. This
adds up to 48 circles.

Johannes Kepler put an end to the superposition of circles in 1609, when
he showed in his book “Astronomia Nova” that elliptical orbits fitted the
observed data better and simpler.

It is generally believed that Kepler ended the dogma of the circle, but this
is not so. The circle disappeared from astronomy, but it reappeared in other
fields of science in disguise. In electrical engineering and a good part of
physics, we meet the old circle under the new name of exponential function
€' or unit circle in the complex plane. Anyone with the usual background of
electrical communications will interpret Fig. 0-1 not as a superposition of a
deferent and an epicycle but as a superposition of two sinusoidal oscillations
I, exp(iw,t) and I, exp(iw, ) using complex notation.! Indeed, Fig. 0-1 is a-
standard illustration for single sideband modulation of a sinusoidal carrier
by a sinusoidal signal. Speaking more generally, the superposition of circles
by Ptolemy and Copernicus became the Fourier series expansion in complex
notation.

The expression character group of the topologic group of real numbers
does not seem to have anything to do with the circle, but its mathematical
notation {¢"} reveals the truth. This character group implies the topology of
the continuum for space-time, which in turn permits the use of differential
calculus for functions of space and time. Considering the universal use of
differential calculus in physics, one cannot help but suspect that the circle
influences physics today as much as it once influenced astronomy.

Finding and studying hidden remnants of the dogma of the circle is the
purpose of sequency theory.

Let us observe that the deferents and epicycles of Ptolemy represented
orbits well enough to get Vasco da Gama to India, Christopher Columbus to
America, and one of Ferdinand Magellan’s ships around the world. It was a
sufficiently good theory for many practical purposes, but its finer details
alwaysindicated that something was not quite right. Similarly, the exponential
function or the sine-cosine functions in communications have proved to be

! I exp(iw, 1) and I, exp(iw, 1) are called vectors in the older literature (Cherry, 1949;
Cuccia, 1952) and phasors in the newer literature (Van Valkenburg, 1964; Taub and Schilling,
1971).
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perfectly good for many applications, but it is generally known that some-
thing is not quite right. All real signals have an infinite frequency bandwidth,
filters yield an output voltage before an input voltage is applied, etc. We use
experience and common sense to correct for such deficiencies of the theory;
but a correct theory would not need corrections, and the known need for
corrections may be like the tip of the iceberg. Turning to the character group
of the topologic group of real numbers, there can be no doubt about the
success of differential calculus in physics; but it is unsatisfactory to talk about
what is happening at a point x and at another point x + dx, if we cannot make
measurements at two points having a distance dx from each other.

THE CIRCLE AND THE CIRCULAR FUNCTIONS IN COMMUNICATIONS

The unit circle in the complex plane, ™' = cos wt + i sin wt, and its
decomposition into circular functions play a dominant role in electrical
communications and physics. Whenever one uses the term frequency, one
refers implicitly to these functions. Let us see how this dominant role came
about and where its limitations are.

During the 19th century, the most important functions for communica-
tions were the block pulses shown in Fig. 0-2. Voltage and current pulses
could be generated by mechanical switches, amplified by relays, and detected
by a variety of magnetomechanical devices. Sine-cosine functions and the
exponential function were well known and so was Fourier analysis, although

sine and cosine functions Walsh functions block pulses
[Tkl
‘ wal(08)
_ - T ST i k=2r—l
/_\ 121 k-3 J_l
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F1G. 0-2. Sine—cosine functions, Walsh functions, and block pulses.
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in a somewhat rudimentary form. Almost no practical use could be made of
this knowledge with the technology available at that time. Heinrich Hertz
used the exponential function to-obtain his famous solution of Maxwell’s
equations for dipole radiation, but he was never able to ptoduce sinusoidal
waves. His experiments were done with what we would call colored noise
today (Hertz, 1889). Alexander Graham Bell tried to develop telegraphy
multiplex equipment using sinusoidal functions, but failed because he could
not produce voltages with sinusoidal time variation. His voltages were
square waves, while his receivers resonated with sine waves. Two results of
this work were the introduction of the word sinusoidal into communications
engineering and the discovery of voice transmission by electricity. Bell’s tele-
graphy transmitter decomposed voice into square waves and the receiver
recomposed it from the square waves. Hence, the decomposition of voice into
square waves piredates the decompositicn into sinusoidal waves by many
decades (Bell, 1876; Marland, 1964).

Telegraphy equipment using orthogonal sine—cosine functions according
to Bell's concept was successfully developed more than seventy years later
under names like Kineplex, Rectiplex, and Digiplex.

The first practical use of sinusoidal functions came toward the end of the
19th century with the development of capacitors in a useful form. Capacitors
in the form of metallic spheres and Leyden jars had existed for a long time,
but their capacitance was small and their physical structure inconvenient.
The implementation of inductances through the use of coils had been known
long before. Practicai resonant circuits for the separation of sinusoidal eiectro-
magnetic waves with different frequencies conid thus be built around the
turn of the century. Low-pass and band-pass {iiters using coils and capacitors
were introduced in 1915, and a large new field for the application of sinusoidal
functions was opencd. Speaking more geineraliy. the usefulness of sinusoidal
functions in communications is intimately related to the availability of linear,
time-invariant circuit components in a practical form.

On the theoretical level, the use of sinusoidal functions is strongly favored
by differential calculus, and our concept of the topology of space-time derived
from it. This theoretical basis is discussed in some detail in the sections of this
book devoted to physics.

The first indication that a theory of communications based on sine-cosine
functions would eventually prove unsatisfactory comes from the importance
of linear, time-invariant circuit components and circuits for these functions.
One cannot transmit information if everything is {time) invariant. The
telegrapher’s key, the microphone, and the amplitude modulator are linear
but time-variable devices. Making them time invariant by not operating the
key, not speaking into the microphone, or not feeding a time-variable modu-
lating voltage into the modulator puts an end to the transmission of infor-
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mation. The requirement for time variability for information transmission
holds quite generally. An atom with all electrons in certain quantum states
transmits no information. A photon is emitted by a change of quantum state,
and this time variation provides information about the energy difference of
the initial and final state.

Sine-cosine functions are obtained as the eigenfunctions of systems
described by linear differential equations with constant coefficients. Hence,
sine-cosine functions are most convenient as long as one may ignore the
time variability. Increasing sophistication forces one to use equations (not
necessarily differential equations) with variable coefficients; their eigen-
functions are no longer sinusoidal functions.

We have so far discussed time variability. Space variability is a straight-'
forward extension. Sinusoidal functions have slanted our thinking heavily
toward time signals. As an example, consider a tunable generator for sin-
usoidal functions. All the commercially available ones are generators for
time-variable sinusoidal functions. Indeed, it is not only impossible to buy
genrerators for space-variable sinusoidal functions but it is rather difficult
even to imagine a generator that can be tuned, e.g., from 20 to 20,000 cycles
per meter. Most textbooks do not mention space signals. Publications on
filters are almost exclusively concerned with time signals.

A simple example of a space signal with two variables is a black-and-white
photograph that has various shades of gray as a function of x and y in cartesian
coordinates or of r and ¢ in polar coordinates. A television signal is a function
of two space vartabies and the time variable. The ubiquity of TV signals makes
it safc to conclude that most transmitted information does not consist of func-
tions of the time variable only. Beyond TV, most of the information received
by us comes through the eyes and not the ears.

Why then do we hear se little about space signals and filters for space
signals? One reason is thai the concept of time invariance, meaning that
something Las aiways been as it is now and will always remain so, is acceptable
to our thinking although we know it is unrealistic. Space invariance, on the
other hand, is so unrealistic that we cannot accept it. A television image
clearly has a left and a right edge, a top and a bottom, while the finite cxtension
in time 1s much iess obvious. There are 30 x 3600 = 108,000 images as a
sequence of time per hour according to the U.S. standard, but none of the
more widely used TV systems has more than some five or six hundred space
points in the x and y direction. Hence, a theory of space filters must begin with
space-variable filters and cannot consider space-invariant filters as a starting
point. A second reason for not hearing much about filters for space sigiials is
that filters for time signals are overwhelmingly implemented by inductances
and capacitances, but this technology is not applicable to filters for space
signals.



6 INTRODUCTION

We may answer at this point a question that has often been raised: Why
should one use nonsinusoidal functions when sinusoidal functions have
proved to be so good for theoretical investigations and practical applications?
The answer is that there are certain uses for which sinusoidal functions are
good. These are the uses that have been developed during the last eighty
years. There are other uses for which sinusoidal functions are not good and
which therefore have not been developed and are not found in our textbooks.
Spatial electric filters were not derived from sinusoidal functions. Television
scanners based on sine-cosine functions were never developed. Sinusoidal
electromagnetic waves cannot be used to discriminate between a reflector
and a scatterer, or between a conducting and a nonconducting scatterer.
Both effects are of great interest in radar, but their very existence escaped
our attention as long as we were restricted to thinking in terms of sinusoidal
waves. Multipath transmission is known to lead to signal cancellation
due to interference fading, but only for sinusoidal and other polarity-
symmetric waves. Several more effects of electromagnetic waves have been
found that are so obscure for sinusoidal waves that they were never noticed.

Let us turn to the third basic reason for going beyond sine—cosine
functions: the convergence of Fourier series and Fourier transform. Any
practical signal can be approximated by the Fourier series or the transform
in the sense of a vanishing mean-square error. Mean-square convergence
implies that the energy of a signal is the same as that of a superposition of
sine-cosine functions approximating it. This preservation of energy is
certainly necessary, but it is not sufficient for the transmission of information.
For an explanation of this statement refer to Fig. 0-2. The Walsh functions
shown there are characterized by the location of the zero crossings or sign
changes. The constant sections between the zero crossings can always be
filled in; they convey no information. A Fourier series or transform of these
Walsh functions converges everywhere except at the zero crossings. The
divergence at these “jumps” is so well known that it received its own name,
Gibbs phenomenon. Hence, we must conclude that the Fourier series converges
everywhere, except where it is needed. Let us go one step further and consider
acurrent flowingin a Hertzian dipole. The electric and magnetic field strengths
in the far zone are proportionate to the first derivative of the current. If the
current is represented by a series expansion, we cannot differentiate term by
term to obtain the field strengths, since convergence of a series does not imply
convergence of the differentiated series. To obtain some idea about the
number of solutions of the wave equation or Maxwell’s equations that cannot
be represented with uniform convergence by a Fourier series or transform,
let us note that for each solution with uniform convergence there are in-
finitely many solutions without uniform convergence.

It is worthwhile returning to astronomy at this point. An elliptical orbit
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can he represented by a sum of circles without any problems of convergence
or differentiability. The concept of epicycles was not wrong—it was only
unnecessarily complicated. The simplification of the representation of the
orbits of the planets by means of ellipses with the Sun in one focal point led
in due course to the theory of gravitation. There is hardly a better example to
show the importance of simplicity. Even if a series expansion is used.correctly.
it may obscure features that a simpler representation would reveal.

A look at the practical side of the convergence problem shows that circuit
design is well ahead of theory. The typical on-off type switching functions
preferred by semiconductor circuits do not permit an approximation of the
transients due to the Gibbs phenomenon, and the transients are the important
parts of the switching functions. But this is no problem, since nobody builds
pulse generators that contain many amplitude-, frequency-, and phase-stable
sinusoiaal oscillators in order to produce two-valued pulses according to the
Fourier series. On the contrary, it is general practice to synthesize stable
sinusoidal oscillations by means of block pulses generated by digital circuits.'

Basic MATHEMATICAL CONCEPTS

Tec see in which way one may profitably generalize our theory of com-
munications based on sine-gosine functions, let us consider Fig. 0-2 again.
Block pulses, which were the historically first important system of functions,
are shown on the right. The sine-cosine functions plus the constant function
used in the Fourier series are shown on the left. One may readily see why we
have an extensive theory based on sine-cosine functions, but not one based
on block pulses. The block pulses differ by a time shift only. In other words,
they contain one free parameter. which we call delay. The periodically
continued sine-cosine functions contain the parameter delay too, which is
called phase for these particular functions, but in addition they contain the
parameter frequency. In essence, sine—cosine functions of different frequency
have a different shape, while the block puises all have the same shape. For a
satisfving, more genéral theory, one will thus have to look for nonsinusoidal
functions that have at least as many parameters as the sinusoidal functions.
Since sine-cosine functions are a particular system of orthogonal functions,
one may replace them by general systems of orthogonal functions.

The term orthogonal is defined as foliows: Two functions f'(j, 6) and f'(k, 6)
witir the variable 6 and the parameters j and k are called orthogonal in the
interval —% < 0 < 4 if the integral ("2, 7(j, 0)f(k, 0) d6 is zero for j # k.
They are called orthogonal and normalized or orthonormal if the integral
equa's | forj = k.

' An cven betier synthesis by means of Walsh functions was reported by Kitai (1975b).



