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Preface

This is an introduction to stochastic control theory with applications to
economics. There are many texts on this mathematical subject; however,
most of them are written for students in mathematics or in finance. For
those who are interested in the relevance and applications of this power-
ful mathematical machinery to economics, there must be a thorough and
concise resource for learning. This book is designed for that purpose. The
mathematical methods are discussed intuitively whenever possible and
illustrated with many economic examples. More importantly, the math-
ematical concepts are introduced in language and terminology familiar
to first-year graduate students in economics.

The book is, therefore, at a second-year graduate level. The first part
covers the basic elements of stochastic calculus. Chapter 1 is a brief
review of probability theory focusing on the mathematical structure of
the information set at time ¢, and the concept of conditional expecta-
tions. Many theorems related to conditional expectations are explained
intuitively without formal proofs.

Chapter 2 is devoted to the Wiener process with emphasis on its ir-
regularities. The Wiener process is an essential component of modeling
shocks in continuous time. We introduce this important concept via three
different approaches: as a limit of random walks, as a Markov process
with a specific transition probability, and as a formal mathematical defini-
tion which enables us to derive and verify variants of the Wiener process.
The best way to understand the irregularities of the Wiener process is to
examine its sample paths closely. We devote substantial time to the zero
sets of the Wiener process and the concept and examples of stopping
times. It is the belief of the author that one cannot have a good grasp of
the Wiener process without a decent understanding of the zero sets.

xiil



Xiv Preface

In Chapter 3 we define the stochastic integrals, discuss stochastic dif-
ferential equation, and examine the celebrated Ito lemma. The Ito in-
tegral is defined as the limit of Riemann sums evaluated only at the
left endpoint of each subinterval and hence is not a Riemann integral.
However, this formulation fits economic reasoning very well, because
under uncertainty future events are indeed nonanticipating. It is similar
to the discrete-time formulation in which an economic agent makes a
decision at the beginning of a time period and then subjects herself to
the consequences after the state of nature is revealed. These mathemat-
ical tools enable us to study the Black—Scholes option pricing formula
and issues related to irreversible investment. To make the presentation
self-contained, we include a brief discussion of the heat equation and
Euler’s homogeneous equation. More importantly, we caution the reader
throughout the chapter that some of results and intuitions cherished by
economists may no longer be true in stochastic calculus.

The second part of the book is on the stochastic optimization meth-
ods and applications. In Chapter 4 we study the Bellman equation of
stochastic control problems; a set of sufficient conditions, among them
the transversality condition, for verifying the optimal control; and the
conditions for the existence and differentiability of the value function.
We guide the reader through a step-by-step argument that leads to the
Beliman equation. We apply this solution method to many well-known
examples, such as Merton’s consumption and portfolio rules, demand
for index bonds, exhaustible resources, the adjustment-cost theory of in-
vestment, and the demand for life insurance. We also derive the Bellman
equation for a certain class of recursive utility functions to broaden the
scope of applications to models with variable discount rates. Most of all,
we wish to show that setting up the Bellman equation for a stochastic
optimization problem in continuous time is as easy as setting up the La-
grange function in a static, constrained optimization problem. We hope
applied economists will find this powerful tool readily accessible.

In Chapter 5 we discuss various methods of finding a closed-form
representation for the value function of a stochastic control problem. In
many economic problems, the functional form of the value function is
absolutely essential to ascertain the optimal policy functions. We present
the commonly employed methods systematically, from brute force to
educated guess. Some of the problems are solved using more than one
method so that the reader can compare the method’s strengths and weak-
nesses. We also introduce the inverse optimum methodology that enables



Preface XV

us to ascertain the underlying economic structure from the observed pol-
icy functions. The chapter title, “How to Solve It,” which is borrowed
from Pélya’s book, summarizes the spirit of the presentation. We hope
researchers will find this chapter useful.

In Chapter 6 we investigate two classes of economic problems related
to the boundaries of a controlled diffusion process. The first class of
problems relates to the nonnegativity constraint, which is not addressed
in the mathematical literature. Specifically, the mathematical solution to
a controlled diffusion process assumes values on the whole real line,
while the economic variables such as consumption and capital-labor
ratios cannot be negative. We introduce several approaches to address
this issue. As an example, we employ a reflection method to show that
the capital-labor ratio in the stochastic Solow equation can never become
negative. The second class of problems uses the optimal stopping time
technique. We show the reader how to formulate and solve this type of
problem through two well-known economic models: precautionary and
transactions demand for money, and the tree-cutting problem. We also
show that, even though the optimal policy function is implicitly defined,
comparative dynamics can still be performed if we do the mathematics
right.

The book includes many exercises, which follow immediately after
each topic so that the reader can check and practice their understanding
of the subject matter. Many of them are provided with useful hints; those,
however, should be used only after an honest attempt has been made.
Notes and suggested readings are provided at the end of each chapter for
more relevant references and possible extensions. The “Miscellaneous
Applications and Exercises” in the Appendix provide the reader with
more applications to economics and can also be used as review exercises
on stochastic optimization methods.
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Probability Theory

1.1 Introduction

In this chapter we introduce probability theory using a measure-theoretic
approach. There are two main subjects that are closely related to eco-
nomics. First, the concept of o-algebra is closely related to the notion
of information set used widely in economics. We shall formalize it. Sec-
ond, the concepts of conditional probability and conditional expectation
are defined in terms of the underlying o -algebra. These are background
materials for understanding Wiener processes and stochastic dynamic
programming.

We keep proofs to the bare minimum. In their place, we emphasize
the intuition so that the reader can gain some insights into the subject
matter. In fact, we shall go over many commonly employed theorems on
conditional expectation with intuitive explanations.

1.2 Stochastic Processes

1.2.1 Information Sets and o-Algebras

Let © be a point set. In probability theory, it is the set of elementary
events. The power set of 2, denoted by 2, is the set of all subsets of .
For example, if the experiment is tossing a coin twice, then the set Q is
{HH,HT,TH,TT}. It is easy to write down all 2% = 16 elements in
the power set. Specifically,

2% — (@, {HH},{HT)},{TH},{TTY},{HH,HT},{HH, TH},
{HH,TT},{HT, TH},{HT,TT},{TH, TT},{HH,HT, TH},
(HH,HT,TT},{\HH,TH,TT},{HT,TH,TT}, Q}.

|



2 Probability Theory

In general, the cardinality of the power set is 2/, where || is the
cardinality of the set 2. Power sets are very large. To convince yourself,
let the experiment be rolling a die twice, a rather simple experiment. In
this simple experiment, |2| = 36 and the cardinality of the power set is
236 = 6.87 x 10'°. It would be impractical to write down all elements in
this power set. What we are interested in is subsets of the power set with
certain structure.

Definition 1.1 A4 class F of subsets of Q, i.e., F C 2%, is an algebra (or
a field) if:

(i) A € F implies A° € F, where A° is the complement of A in 2.
(ii) A, B € F imply that AUB € F.
(iii) Q2 € F (equivalently, & € F).

Conditions (i) and (ii) imply 4N B e F, because AN B =
(A4A° U By,

Definition 1.2 4 class F of subsets of Q is a o-algebra if it is an
algebra satisfying

00
(iV){fAiEf, i=1,2,..., then UA,'E]'-.

i=l

The Greek letter “o” simply indicates that the number of sets forming
the union is countable (including finite numbers).

Any A € F is called a measurable set, or simply, an F-set. We use
F to represent the information set, because it captures our economic
intuition. Conditions (i) through (iv) provide a mathematical structure
for an information set.

Intuitively, we can treat a measurable set as an observable set. An
object under study (w € Q2) is observable if we can detect that it has
certain characteristics. For example, let Q be the set of flying objects and
let 4 be the set of flying objects that are green. Then A4° represents the set
of all flying objects that are not green. Condition (i) simply says that if, in
our information set, we can observe that a flying object is green (i.e., 4
is observable), then we should be able to observe that other flying objects
are not green. That means 4° is also observable. Another example is this:
if we were able to observe when the general price level is rising, then
we should be able to observe when the general price level is not rising.
Formally, if 4 € F, then 4° € F.
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Condition (ii) says that, if we can observe the things or objects de-
scribed by characteristics 4 and those described by characteristics B,
then we should be able to observe the objects characterized by the prop-
erties of 4 or B. That is, 4, B € F imply 4 U B € F. For example, if
we are able to observe when the price level is rising, and if we are able
to observe the unemployment level is rising, then we should be able to
observe the rising of price level or rising unemployment. The same ar-
gument applies to countably many observable sets, which is condition
(iv). These mathematical structures make o-algebras very suitable for
representing information.

It is clear that the power set 2% is itself a o-algebra. But there are lots
of o -algebras that are smaller than the power set. For example, in the ex-
periment of tossing a coin twice, 7| = {Q, &, {HH},{HT,TH, TT}}
and /, = {Q, 9, {HH, TT},{HT, T H}} are both algebras. The infor-
mation content of JF is this: we can tell whether tossing a coin twice
ends up with both heads or otherwise. The information content of J; is
this: we can tell whether both tosses have the same outcome or not. The
reader should try to find other algebras in this setup. An obvious one is
to “combine” F; and F>. See the exercise below. We will return to these
two examples in Example 1.12.

Exercise 1.2.1
(1) Verify that F\ and F, are algebras.
(2) Show that Fy U JF, while containing JF\ and JF, is not an algebra.
(3) Find the smallest algebra G that contains F\ and F; in the sense
that for any algebra H which contains F\ and F», then G C H.

Definition 1.3 A set function P : F —R is a probability measure if P
satisfies

(H))0< P(A) <ljforall AecF;

(i) P(@)=0and P(Q) =1,

(iii) if A;€F and the A;s are mutually disjoint, then
P(UZ) 41) = X2, P(4y).

Property (iii) is called countable additivity. The triplet (2, F, P) is
used to denote a probability space.

Example 1.4 (Borel Sets and Lebesgue Measure) When Q =R (the
whole real line) or Q = [0, 1] (the unit interval), and the o-algebra
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is the one generated by the open sets in R (or in [0, 1]), we call this
o -field the Borel field. It is usually denoted by B. An element in the Borel
field is a Borel set.

Examples of Borel sets are open sets, closed sets, semi-open, semi-
closed sets, F, sets (countable unions of closed sets), and G sets (count-
able intersections of open sets). When Q = [0, 1], B is the o-algebra,
and P(A) is the “length” (measure) of A € F, we can verify that P
is a probability measure on B. Such a measure is called the Lebesgue
measure on [0, 1].

However, not all subsets of R are Borel sets, i.e., not all subsets of
R are observable. For example, the Vitali set is not a Borel set. See, for
example, Reed and Simon (1972, p. 33). For curious souls, the Vitali set
V is constructed as follows. Call two numbers x, y € [0, 1) equivalent if
x — y is rational. Let V be the set consists of exactly one number from
each equivalent class. Then V is not Lebesgue measurable.

A single point and, therefore, any set composed of countably many
points are of Lebesgue measure zero. The question then is this: Are sets
with uncountably many points necessarily of positive Lebesgue measure?
The answer is negative, and the best-known example is the Cantor set.

1.2.2 The Cantor Set

Since the Cantor set contains many important properties that are essen-
tial to understanding the nature of a Wiener process, we shall elaborate
on this celebrated set. The construction of the Cantor set proceeds as
follows. Evenly divide the unit interval [0, 1] into three subintervals. Re-
move the middle open interval, (1/3, 2/3), from [0, 1]. The remaining
two closed intervals are [0, 1/3] and [2/3, 1]. Then remove the two mid-
dle open intervals, (1/9, 2/9) and (7/9, 8/9), from [0, 1/3] and [2/3, 1]
respectively. Continue to remove the four middle open intervals from
the remaining four closed intervals, [0, 1/9], [2/9, 1/3], [2/3, 7/9], and
[8/9, 1], and so on indefinitely. The set of points that are not removed is
called the Cantor set, €.
Any point in the Cantor set can be represented by

o0 .

I
E 3—'; where i, = 0 or 2.
n=1
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For example,

G 222
9" 27 81 ' 243 ’

7 2
9 3

ie, 7/9=1(2,0,2,2,2,...). Similarly, 8/9=(2,2,0,0,...), 0=
0,0,0,...), 8/27=(0,2,2,0,0,0,...),and 1=(2, 2,2, ...). There-
fore, the cardinality of the Cantor set is that of the continuum. Since the
Lebesgue measure of the intervals removed through this process is

]

11 1 2!
§+-9--2+5,7-4+---_2 X =1,

n=1

the Cantor set must be of Lebesgue measure zero.

The main properties that are of interest to us are three. First, here is a
set with uncountably many elements that has a zero Lebesgue measure.
Second, every point in the Cantor set can be approached by a sequence of
subintervals that were removed. In other words, every point in the Cantor
setis a limit point. Such a set is called a perfect set. Third, for any interval
I C [0, 1], it must contain some subinterval that was eventually removed,
1.e., we can find a subinterval J < I such that J and the Cantor set € are
disjoint: J N'€ = &. That is, € is nowhere dense in [0, 1]. These three
properties are the basic features of the zero set of a Wiener process, as
we shall see later.

1.2.3 Borel-Cantelli Lemmas

Definition 1.5 The limit superior and the limit inferior of a sequence of
sets {A,} are

(o AN o]
limsup 4, = ﬂ UA’“

n—00 n=1 k=n

x> o
liminf 4, = U ﬂAk‘

n=1 k=n

Simply put, x € limsup,_, ., 4, means x belongs to infinitely many
Ay. In contrast, x € liminf,_, o, 4, means x belongs to virtually all 4y,
in the sense that there exists N suchthatx € 4; fork > N. Since Fisa



