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Preface

The difficulty in writing a *how-to’ book on numerical methods is to find a
form which is accessible to people from various scientific backgrounds. When
we started this project, hierarchical N-body techniques were deemed to be ‘too
new’ for a book. On the other hand, a few minutes browsing in the References
will reveal that the scientific output arising from the original papers of Barnes
and Hut (1986) and Greengard and Rohklin (1987) is impressive but largely
confined to two or three specialist fields. To us, this suggests that it is about time
these techniques became better known in other fields where N-body problems
thrive, not least in our own field of computational plasma physics. This book
is therefore an attempt to gather everything hierarchical under one roof, and
then to indicate how and where tree methods might be used in the reader’s
own research field. Inevitably, this has resulted in something of a pot-pourri
of techniques and applications, but we hope there is enough here to satisfy the
beginners and connoisseurs alike.



Contents

Preface
1 Introduction
2 Basic Principles of the Hierarchical Tree Method

wm

2.1 Tree Construction

2.2 Force Calculation

2.3 Multipole Expansion

24  Dynamics

Open Boundary Problems

3.1  Gravitational Problems in Astrophysics
3.2 Space-Charge Dominated Particle Beams
3.3 Collisions of Heavy Nuclei: A Case Study
Optimisation of Hierarchical Tree Codes

4.1  Individual Timesteps

4.2 Higher Order Integration Schemes

4.3 Vectorisation and Parallelisation

44  Timing

45  Accuracy

4.6  Special Hardware

Periodic Boundary Conditions

5.1 Minimum Image Method

5.2 Ewald Summation

5.3 Timing

5.4 Monte Carlo Application

5.5  Nonequilibrium Systems

Periodic Boundary Problems

6.1 Plasma Physics: Collisions in Dense Plasmas

6.2  Systems of More Complex Interaction Potentials

page ix
1

9

9
18
26
35
37
37
47
52
65
65
70
73
81
83
87
88
90
93
102
104
106
109
110
117



viil
6.3
6.4

Contents

Biomolecules
Materials Science

7 The Fast Multipole Method

7.1
7.2
7.3
7.4
7.5
7.6

Outline of the Fast Multipole Algorithm
2D Expansion

3D Expansion

Implementation of Fast Multipole Codes
Timing and Accuracy

Applications

Appendix 1: Multipole Expansion in Two Dimensions
Appendix 2: Spherical Harmonics
Appendix 3: Near-Neighbour Search

References

Index

120
124
126
126
134
139
140
143
146
149
152
155
157
165



1

Introduction

Classical systems that consist of many particles interacting through long-range
forces have interested physicists for centuries. The equation of motion of a
system with more than two particles does not have an analytical solution, and it
is only since the advent of high-speed computers that the trajectories of many
particles could be followed simultaneously in detail. Over the last 40 years,
computer simulations of N-body systems have become an indispensable tool
in all branches of physics. Mathematically the N-body problem is represented
by the solution of N second-order differential equations of the form
2

m,%:—V,-V i=1,2,3...N, (1.1)
where r; and m; are the positions and masses of the ith particle. The knowl-
edge of the positions and velocities as a function of time allows the global or
macroscopic properties of the system to be calculated.

The potential V' in Eq. 1.1 can include different kinds of interactions — those
stemming from the forces the particles exert on each other and those of external
fields V. like external electric or gravitational fields. For classical systems the
general form of the potential can be

V = Vshort + "I(mg + Vex, (1.2)

where V., is a rapidly decaying function of distance, like, for example, the
Van der Waals potential in chemical physics, and Vj,,, is a long-range potential
like. for example, the Coulombic or gravitational potential. For a comparison
of a typical short-range potential with a long-range potential see Fig. 1.1. The
external field V., is a function which is usually independent of the number and
relative position of the particles and is calculated separately for each particle,
which leads to a computation time of the order O(N). In the numerical evalu-
ation of fields the cost of computing V., is of the order O(N) too, because
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Fig. 1.1. Comparison of a typical long-range potential (Coulomb potential) with a

short-range potential (Lennard—Jones potential).

the potential decays rapidly and each particle interacts significantly with only
a small number of its nearest neighbours.

Although computers have made the simulation of this type of N-body prob-
lem feasible, those including long-range forces — Coulombic or gravitational —
still present a challenge. The evaluation of ¥}, if done directly, requires on the
order of O(N?) operations, because this kind of potential decays slowly and the
interaction of each pair of particles in the system has to be taken into account.
Improvements in technique and computer speed have significantly increased
the manageable simulation size, but the number of particles in such direct cal-
culations is still too small for a variety of problems at present. This kind of
computation is reasonable for a system involving a few hundred particles, but
the costs increase so rapidly that simulations with a few thousands of particles
are quite expensive and those with millions of particles are unattainable.

On the other hand, there are many examples in classical physics where models
based on large-scale ensembles of particles interacting by long-range forces are
very useful — astrophysics and plasma physics are two prominent examples.
Several different approaches have been developed to reduce the burden of the
long-range part of the calculation. Until recently, so-called particle-in-cell (PIC)
methods have been regarded as the only effective way to simulate large systems
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of particles interacting through long-range forces. For a detailed review see
Dawson (1983). The basic procedure of the PIC method is:

e A regular grid is laid out over the simulation region and the particles con-
tribute their masses, charges, etc. to create a source density; this source den-
sity is interpolated at the grid points;

o the solution of the elliptical partial differential equation, usually obtained
with the help of a fast Poisson solver, is used to calculate the potential values
at the grid points:

e using these potential values the force is evaluated and interpolated to the
particle positions.

So, by superimposing a grid of sample points, the potential field associated with
the forces is calculated.

The total operation count for the PIC method is of the order O(N + M log M),
where M is the number of mesh points and N is the number of particles in the
system. Although the asymptotic computation cost is of the order O(N log N).
in practice M < N and, therefore, the numerical effort is observed to be pro-
portional to N.

Due to this good computational efficiency, PIC codes are applied successfully
to a variety of problems. However, there are three situations that PIC codes have
difficulties dealing with:

e Strongly nonuniform particle distributions.
e Strongly correlated systems.
e Systems of complex geometry.

The first problem concerns the fact that the mesh in the standard particle-mesh
schemes provides limited resolution. Due to the limitations of memory space
in currently available computers, it may not be possible to use standard PIC
methods to model the dynamics of a system with highly nonuniform source
distributions, like, for example. in galaxies or in the cold dark matter scenario.

There have been attempts to overcome this disadvantage of the standard PIC
method to obtain a better resolution. Villumsen (1989) has developed a PIC code
which employs meshes of finer gridding in selected subregions of the system.
Owing to the local improvement of the spatial resolution, these hierarchical
meshes permit a more accurate modelling of regions of higher particle density.
Where the poor resolution is of a dynamical nature — for example, due to shock
waves — moving grids and adaptive grid refinement (Brackbill & Ruppel 1986)
can be applied.

If the ratio of particles per cell is suitably large, local interactions are smoothed
away in PIC simulations, leaving behind the collective or global behaviour of
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Fig. 1.2. Organisation of force contributions in P*M code.

the system, and fluctuations due to the poor statistics are less of a problem.
Although this smoothing effect is desirable in the context of, say, plasma ki-
netic theory, where the systems are usually considered uncorrelated, the PIC
method is often not satisfactory where local corrections become important for
the correct description of the physics. Many gravitational systems as well as
high-density plasmas cannot be approximated as collisionless, and the two-body
correlation function plays an important role.

A better method to describe the local correlations with PIC simulations is the
so-called particle—particle particle—mesh technique (P>M) (Hockney & East-
wood 1981). The idea in P3M is to correct the far-field solution by including
local forces by direct particle—particle interactions (see Fig. 1.2). This method
seems to be an effective compromise between the possible number of particles
and the spatial resolution in dynamic problems.

P*M performs very well if the particles are more or less uniformly distributed
in a rectangular region and relatively low precision is required. However, if the
required precision is high or the particle distribution is clustered, this algorithm
is sometimes not ideal. In these situations, inaccuracies can be introduced by
matching long- and short-range forces (Bouchet & Hernquist 1988), and the
computational effort tends to become excessive; more direct particle—particle
interactions have to be taken into account due to the clustering. This limits the
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number of particles that can be simulated and the degree of nonlinearity that
can be handled.

Another problem due to the grid of the PIC algorithm is that it imposes
boundaries. Sv h boundaries might be rather artificial if the system is in ‘free
space’ or has a complicated geometry. For systems without a real physical
boundary, such as the collision of two galaxies, this usually means that one has
to construct a grid much larger than the actual space occupied by the particles
to avoid unphysical particle-boundary effects.

For strongly coupled systems it would be desirable to use a direct particle—
particle force calculation, if the number of simulation particles was not so lim-
ited due to the N2 scaling of the computation time. In the mid-1980s, several
workers devised hierarchical schemes to exploit the fact that a particle interacts
strongly with its near neighbours, but less detailed information is needed to
describe its interaction with more distant particles. The first codes of this kind
were developed independently by Appel (1985), Jernighan (1985), and Porter
(1985). Although these codes had a nominal N log N scaling for the computa-
tion time, they used neighbour lists and data structures which tended to become
tangled, thus introducing errors due to unphysical groupings of particles. This
problem was overcome by Barnes and Hut (1986), who used a tree structure
rebuilt from scratch at each timestep, ensuring that particle groupings were sys-
tematically updated. An appealing feature of the Barnes—Hut scheme is that the
N log N scaling can be rigorously proven.

In Chapter 2, the so-called hierarchical ‘tree’ algorithm will be described
in its basic form. It will be shown how this special means to divide space is
used to construct a hierarchical data structure. This tree structure provides a
systematic way of determining the degree of ‘closeness’ between two different
particles without explicitly calculating the distance between each particle pair.
The net result is to reduce the computational effort of the force calculation to
O(N log N ). The force on an individual particle from other particles close by is,
on average, evaluated by direct particle—particle interaction, whereas the force
due to more distant particles is included as a particle-cluster contribution. To
obtain a better accuracy, the multipole moments of the cluster can be included.
For dynamical systems, this process of building a tree structure and using it for
the force calculation is repeated at each step.

A fairly sizeable literature already exists on tree codes, including a number
of works comparing their performance against standard PP codes — notably
Hernquist (1987). It is beyond the scope of this book to provide an exhaustive
list of ‘validity’ criteria for hierarchical algorithms, but a few of the more
important tests, such as energy and momentum conservation, will be discussed
at the end of Chapter 2. Specific examples will be described in Chapters 3 and 6.
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In Chapter 3, applications of the tree algorithm will be described in astro-
physics, beam transport, and nuclear physics. The examples discussed here have
the common feature that the system evolves freely in space and no fixed bound-
aries are imposed. Open boundary problems are easiest to investigate with tree
codes because one simply checks the size of the system after each timestep
and adapts the simulation box accordingly so that all particles are included.
Tree codes were first developed to study the collision of galaxies (Barnes &
Hut 1986, Barnes & Hernquist 1993), where this adaptiveness of the simulation
region is of great advantage. Some examples of such simulations which have
led to a new understanding of galaxy dynamics and insight into the role of dark
matter will be described.

The transport of particle beams in storage rings is of widespread importance
for applications requiring a well-characterised and tightly focussed source of
electrons or ions. Whether the beam is for etching grooves on an integrated
circuit, or for generating X-rays in an inertial fusion hohlraum, it is essential
to optimise the quality of the beam as it is accelerated and transported. After
a brief introduction to elementary particle beam concepts, some applications
are proposed where tree codes could challenge the near-monopoly on beam
modelling currently enjoyed by PIC codes.

At one of the frontiers of fundamental physics is the field of heavy ion col-
lisions. By smashing heavy ions together and observing the fragments which
result from disintegrating nuclei, one can learn a great deal about how nuclear
matter is held together. Through a combination of experiments and theoretical
modelling, it is possible to deduce the properties not only of elemental nuclei,
but also of more exotic objects and phenomena, such as neutron stars and the
early stages of the universe. One promising approach for studying nuclear frag-
mentation is ‘Quantum Molecular Dynamics’ (QMD), which explicitly takes
into account many-body correlations between nucleons. A detailed case study
is presented here, showing how the tree algorithm can be integrated into existing
QMD models.

The tree algorithm in Chapter 2 is described in its basic working form. In
Chapter 4 it will be shown how to improve the performance of such a code,
both through higher accuracy and standard optimisation techniques. A common
problem in N-body simulations is that a relatively small number of particles
undergo close encounters. Assuming that the necessary stability criteria are
satisfied, these particles often determine the timestep on which the whole simu-
lation has to be performed. One way to reduce the computation time employed
in direct particle—particle calculations is to use an individual timestep for each
particle. Due to the hierarchical structure this trick is not easy to combine with
the tree algorithm, though a few implementations now exist. It will be shown
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that it is possible to have ditferent timesteps for particles undergoing close
encounters and particles belonging to the rest of the system, reducing the com-
putation time significantly. Better accuracy of the particle path can be achieved
by introducing higher order integration schemes. In addition to these software
improvements, the performance of the tree code also depends on the computer
hardware. Details will be given on how the tree algorithm can be restructured
so that vectorisation and parallelisation architectures can be fully exploited.

There are many cases where it is not possible to simulate an entire physical
system (e.g.. a solid). On the other hand, 1t is reasonable to model a small part
of it and take the rest into account by including periodic images of the simula-
tion area. These so-called periodic boundary problems are treated in standard
particle—particle codes either by the minimum image method (Metropolis et al.
1953) or the Ewald method (Ewald 1921). In the minimum image method, a
box is formed around the individual particle, which is equal to the size of the
simulation area. In the force calculation only the interactions with particles
within this box are included. For the tree algorithm a difficulty arises because
the cutting process tends to split the more distant groupings of particles. In
Chapter 5 it will be shown how this method nevertheless can be adapted to
tree codes. The minimum image method can be used only for weakly coupled
systems; for strongly coupled systems the force of more distant particles has to
be included too. In this case, the Ewald summation method is required, which
includes an infinite number of periodic images by modifying the Coulomb po-
tential — the so-called Ewald potential. Due to the fact that the tree algorithm
deals with particle—pseudoparticle as well as particle—particle interactions, it is
also necessary to include the higher moments of the multipole expansion of the
Ewald potential (Pfalzner & Gibbon 1994).

During the last 15 years a lot of effort has been put into extending the appli-
cability of the MD method to systems out of equilibrium. It will be shown how
the tree method can be used for nonequilibrium simulations and where special
care is needed to control thermodynamic quantities such as temperature. The
properties of the periodic boundary system are often investigated. not only by
dynamic methods (or molecular dynamics), but via static or Monte Carlo meth-
ods. A brief section is included to show how the tree algorithm can also be used
to perform such calculations.

In Chapter 6 examples for the application of periodic tree codes will be de-
scribed. One obvious candidate for periodic tree simulations is dense plasma.
These relatively large systems interact by long-range Coulomb forces. Low
density plasmas can be modelled successfully by hydrodynamic codes, which
basically treat the plasma as ideal gas, or by PIC codes, which are more suit-
able for collisionless problems. As the density increases, collisions become
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important and have to be included in the calculation. Fokker—Planck codes
model this by a collision term, but this procedure is usually somewhat artificial,
and is valid only for small-angle scattering. Particle—particle codes have the
advantage that they include collisions without any artificial assumptions. Static
properties such as structure factors have been successfully calculated for very
high densities by standard particle—particle codes, but dynamical properties and
strongly nonlinear effects need a much larger number of simulation particles.
It is precisely this sort of application for which periodic tree codes would make
an ideal simulation tool.

In addition to these systems which interact purely by Coulomb forces the
tree algorithm can be applied successfully to systems interacting via different
force terms like in Eq. 1.2 where one of the terms is either gravitational or
Coulombic. In these cases, the long-range term is usually by far the most time
consuming and a speed-up by means of the tree algorithm can bring large gains.
Different applications of tree codes to systems with a more complex structure
of the potential are proposed here, among them ionic liquids, molten salts, and
biological macromolecules like proteins.

Chapter 7 contains an introduction to the so-called Fast Multipole Method
(FMM), which is, in some sense, based on a hierarchical tree code using a
high-order multipole expansion. This kind of code is mathematically more
complicated and has a higher computational effort than a standard tree code,
but the computation time has in principle an O (N) dependence. Formulations
of the algorithm for both 2D and 3D problems will be outlined, based on works
by Greengard and Rohklin (1987), and Schmidt and Lee (1991). An attempt is
also made to compare the relative performance of the BH and FMM algorithms.



2
Basic Principles of the Hierarchical Tree Method

2.1 Tree Construction

We have seen in the preceding chapter that in grid-based codes the particles
interact via some averaged density distribution. This enables one to calculate
the influence of a number of particles represented by a cell on its neighbouring
cells. Problems occur if the density contrast in the simulation becomes very
large or the geometry of the problem is very complex.

So why does one bother with a grid at all and not just calculate the inter-
particle forces? The answer is simply that the computational effort involved
quite dramatically limits the number of particles that can be simulated. Partic-
ularly with 1/r-type potentials, calculating each particle—particle interaction
requires an unnecessary amount of work because the individual contributions
of distant particles is small. On the other hand, gridless codes cannot distinguish
between near-neighbours and more distant particles; each particle is given the
same weighting.

Ideally, the calculation would be performed without a grid in the usual sense,
but with some division of the physical space that maintains a relationship be-
tween each particle and its neighbours. The force could then be calculated
by direct integration while combining increasingly large groups of particles at
larger distances. Barnes and Hut (1986) observed that this works in the same
way that humans interact with neighbouring individuals, more distant villages,
and larger states and countries. A resident of Lower-Wobbleton, Kent, England,
is unlikely to undertake a trip to Oberfriedrichsheim, Bavaria, Germany, for a
beer and to catch up on the local gossip.

Independently, in the early 1980s, several workers attempted to implement
this kind of hierarchical grouping in N-body codes (Appel 1985, Jernighan
1985, Porter 1985). Although these early hierarchical codes had a nominal
N log N dependence of the computation time, additional errors were introduced

9



