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PREFACE

Inter- and intramolecular networks of non-covalent interactions are responsible for a
wide array of phenomena in fields of biology and chemistry. Biological systems use
specific patterns of complementary functionality to provide exquisite control over
biopolymer recognition processes such as protein—protein and protein—polynucleic
acid binding. In Nature, these specific supramolecular interactions play many key
roles, including stabilization of structure, information storage and transfer, catalysis
and self-assembly. Likewise, controlled application of non-covalent interactions pro-
vides an effective tool for fabrication of man-made systems, allowing the creation of
higher-order architecture required for devices and materials, as well as the dynamic
properties required for efficient utilization of these attributes.

The use of specific interactions to control polymer structure and properties is a
rapidly emerging field. We have assembled a group of authors at the forefront of
this field that are studying both the fundamental science inherent in polymer self-
assembly and applications of this strategy to functional systems. This book is
designed for researchers in a wide range of areas, and features both fundamental
aspects and applications of these fascinating systems.

The book is divided into three sections. The first section provides a general
overview of the fundamentals of supramolecular polymers. In Chapter 1, Thibault
and Rotello provide a brief introduction to these systems and in Chapter 2,
Azagarsamy, Krishnamoorthy, and Thayumanavan describe the rapidly emerging
area of amphiphilicity in polymer and dendrimers self-assembly. Interactions at inter-
faces are sometimes similar but often quite different than those in solution, a topic
covered by Loveless, Kersey, and Craig in Chapter 3.

The second section of the book provides a wide variety of examples of the self-
assembly of polymer systems. Aspects covered include hydrogen bond-mediated
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recognition and self-assembly using block copolymers and telechelic oligomers,
as described in Chapter 4 by Mather and Long. Chapter 5 covers the highly versatile
“plug and play” non-covalent sidechain modification of polymers, as described by
Nair and Weck. Extension of this polymer-mediated assembly to nanoparticles is
the focus of Chapter 6 by Chen, Ofir, and Rotello, while Chapter 7 by McKenzie
and Rowan describes metallo-supramolecular systems. In Chapter 8, Mason,
Steinbacher, and McQuade provide an overview of capsule formation using polymers
and biopolymers. Chapter 9 by Gong features the efforts of synthetic chemists to
replicate the specific hydrogen bonding patterns found in biology. Chapter 10
focuses on function, with Guan covering the use of supramolecular polymer
systems to tailor mechanical properties. Shao and Parquette outline the use of hydro-
phobicity to control dendrimers structure and dynamics in Chapter 11.

The third section of the book covers the area of biomolecular recognition using
polymer systems. The creation of colorimetric sensors using polymers is presented
by Basu in Chapter 12. Chapter 13 by Cloninger focuses on glycopolymers and
glycodendrimers, while in Chapter 14, Dong, Yuwono, and Hartgerink cover the
creation of nanofibers via peptide self-assembly. Finally, in Chapter 15, Wu and
Shimizu provide an overview of the field of molecularly-imprinted polymers,
describing the formation of these systems and their applications.

Supramolecular chemistry is a beautiful field, featuring modularity, tenability, and
versatility. We hope that this book fires your imagination for this emerging field.

VINCENT ROTELLO
SANKARAN “THAI” THAYUMANAVAN

Department of Chemistry
University of Massachusetts, Amherst
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