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Invited Paper

Extending Self-Adaptation in Evolutionary Algorithms

David B. Fogel*
Natural Selection, Inc., 3333 N. Torrey Pines Ct., Suite 200, La Jolla, CA 92037 USA

ABSTRACT

Self-adaptation in evolutionary algorithms concerns processes in which individuals incorporate information on how to search for
new individuals. Instead of detailing the means for searching the space of possible solutions a priori, a process of random
variation is applied both in terms of searching the space and searching for strategies to search the space. In one common
implementation, each individual in the population is represented as a pair of vectors (x, 0), where x is the candidate solution to an
optimization problem scored in terms of a function f{x), and G is the so-called strategy parameter vector that influences how
offspring will be created from the individual. Typically, & describes a variance or covariance matrix under Gaussian mutations.
Experimental evidence suggests that the elements of G can sometimes become too small to explore the given search space
adequately. The evolutionary search then stagnates until the elements of & grow sufficiently large as a result of random variation.
Several methods have been offered to remedy this situation. This paper reviews recent results with one such method, which
associates multiple strategy parameter vectors with a single individual. A single strategy vector is active at any time and dictates
how offspring will be generated. Experiments on four 10-dimensional benchmark functions are reviewed, in which the number of
strategy parameter vector is varied over 1, 2, 3, 4, 5, 10, and 20. The results indicate advantages for using multiple strategy
parameter vectors. Furthermore, the relationship between the mean best result after a fixed number of generations and the number
of strategy parameter vectors can be determined reliably in each case.

Keywords: Evolutionary computation, evolutionary algorithm, optimization, self-adaptation, parameter control

L. INTRODUCTION

In nature, individuals and species can evolve mechanisms that affect the mutational distribution of new offspring. This can be
modelled in evolutionary algorithms by including self-adaptation, in which each individual in a population encodes not only a
candidate solution to a particular optimization problem, but also information on how to generate offspring as well. Empirical
evidence and mathematical theory have long suggested that any fixed distribution of variation cannot be optimal for optimization
(Bremermann, 1958; Wolpert and Macready, 1997). Unfortunately, many efforts in evolutionary computation during the period
from 1975-1990 concentrated on applying fixed probabilities of crossover and mutation (denoted P, and P,,,, with values of about
0.6-1.0 and 0.0001-0.01, respectively), following incorrect theory regarding schema propagation and the effects of that propagation
on optimal search (Holland, 1975; Macready and Wolpert, 1998). Self-adaptation offers the possibility for adapting the parameters
that control the search online, as the search is conducted. From the perspective of optimization, there have been few reasonable
alternatives for online variation control.

One alternative is Rechenberg’s 1/5 rule (Rechenberg, 1973). This rule asserts that the convergence rate can be optimized when
1/5 of all offspring are superior to their parents. The 1/5 rule, however, was derived as a result of analysis on linear and quadratic
surfaces, and represents a compromise solution. Moreover, the result holds for the case of infinite dimension size, for populations
comprising only one parent and one offspring. Chellapilla and Fogel (1999) showed that the 1/5 rule may perform far less than
optimal on many common benchmark functions that are not linear or convex. Other rules to control parameters are available, but
these generally require significant handtuning. For a comprehensive review, see Eiben et al., 1999.

Self-adaptation was apparently first applied in evolutionary algorithms in independent investigations by Reed et al. (1967) and
Rosenberg (1967). Rechenberg (1994) remarked that he conceived of this concept in 1967 and incorporated it subsequently into
evolution strategies (Rechenberg, 1973). The most well-known form of self-adaptation follows Schwefel (1981, 1995), and is
restricted to the case of optimizing a real-valued functional f{x). A strategy parameter vector & is associated with each individual
x in the population and guides the generation of offsrping via the rule:

OJI=0‘ X CXP(TN(O,I)*’T’N’(O,])) )
I"=X'+0"’N(0,|) A
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where i denotes the ith dimension of the solution vector x or strategy parameter vector G, N(0, 1) is a standard Gaussian random
variable, N(0,1) designates that a standard Gaussian random variable is sampled anew for each ith dimension, and T and 1’ are
constants, typically set proportional (or equal to) 1/sqrt(2n) and 1/sqrt(2sqrt(n)), respectively, where 7 is the number of dimen-
sions in x and ©. Variations of this procedure can: 1) restrict the length of G to one control element governing all dimensions, 2)
include the use of correlated values of G, and o, where i #}, or 3) change the order of the update equations (1) and (2) and use,
in place of &', (Gehihaar and Fogel, 1990)

Aless well-known but quite similar method was offered independently in Fogel et al. (1991), within the rubric of evolutionary
programming (a meta-evolutionary programming), where for the same task of optimizing /{x), the update equations were:

X' =x+cN0,1) €)
o ,=0,+coMO,1) @

where ¢ is a positive scaling constant with a recommended value of 1/6 (this was intended to ensure that the vast majority of cases
would maintain positive values of ”). In the case where a new value ¢’ were to go below zero, the value would be reset to a small
positive constant €. This constant was often set to 0.0001 or lower. This method was also extended to include correlated
mutations (Fogel et al. 1992). Comparisons to Schwefel’s method above were offered in Saravanan and Fogel (1994) and Saravanan
et al. (1995) on benchmark functions that were of interest at the time. The results generally (but not always) favored Schwefel’s
method and subsequent efforts within both evolution strategies and evolutionary programming have generally followed along
this line. The no free lunch theorem (Wolpert and Macready, 1997; Kdppen et al., 2001) and other related theory (Fogel and
Ghozeil, 1997) indicate that neither Schwefel’s nor Fogel’s update rule can be optimal on every problem and across all represen-
tations. Assessing when to use either rule, or another rule, remains an open question (see also Herrera and Lozano, 2001;
Rudolph, 2001; Beyer and Deb, 2001).

The update equations (1) and (2) impose some difficulties. One such difficulty involves the potential for having the elements
of & fall too small too quickly. Each element of & describes a value related to the average step size in the corresponding dimension.
Therefore, having elements of G that are too small leads to an inefficient search. There is an inherent problem of determining when
the step sizes are “too small” - this is not only problem dependent but also depends on each individual’s local neighborhood on
the response surface. One technique (similar to Fogel et al. 1991) to overcome this is to mandate a lower bound on the elements
of &. Thus, there will always be at least some persistent search as mandated by the lower bound. This method, however, begs the
question of setting the appropriate lower bound, and the optimal bound should vary by dimension.

Alternatively, Fogel et al. (2001) have proposed a method that extends the self-adaptive procedure to include m vectors G,
k=1, ..., m, along with each candidate solution. Thus, instead of the typical representation of (x, G), consider now (x, G, ..., G,).
Only one of the m strategy vectors associated with an individual is active at any time. The active vector is used to control how
to generate offspring using equations (1) and (2). Prior to creating an offspring, there is a probability p, of changing the active
vector by selecting randomly from among the other m — 1 choices. In this way, when a strategy parameter vector is successful in
generating improved offspring, it is reinforced because (1) applies only to the active vector. When an individual fails to generate
improved offspring there is a chance of changing the strategy to an alternative that may work better in the current circumstance.

The approach of Fogel et al. (2001) may offer the following advantages:

1) Under traditional self-adaptation of (x, &), when the parameters of & become too small the user must wait for mutation via (1)
to increase them. This can be time consuming. With the adoption of (x, G, ..., G,) it may be possible to switch randomly to
an alternative G vector that has larger elements and accomplish this more coarse search with a greater probability than the
option of mutating smaller values into larger values above. Essentially, including multiple G vectors may make it easier to
“forget” strategy parameters that are no longer useful.

2) The m strategy vectors may serve as a memory, indicating successful strategies for searching a response surface that have
worked in previous generations. Should an individual need to alternate between strategies for generating offspring, the use
of multiple strategy vectors allows for faster switching between those strategies than might be possible if only a single
strategy vector had to be mutated into the desired alternative.

There are also the following possible disadvantages:

1) The optimum number 7 and optimum probability p_ are unknown and problem dependent.
2 Proc. of SPIE Vol. 4787



2) There is no mathematical analysis that suggests how to set m and p, reasonably.

In the absence of a guiding mathematical theory, experimentation can provide initial evidence on the potential utility of this
concept. Such experimentation has been conducted and reported in Fogel et al. (2001).

2. REVIEW OF RESULTS REPORTED

Fogel et al. (2001) conducted one of the first studies on multiple-vector self-adaptation. The reported results are reviewed here.
The following experiments were conducted. Attention was given to four typical benchmark functions in n= 10 dimensions
(see Yaoet al., 1999):

Fl: Zx2i=1,...,n

F2: Z[100(x2—x,, P+ (x,— 1]+ [100(x 2 —x Y+ (x — 1Y), i=1, ...,n—1
F3: X [x2— 10cos(2mx ) +10],i=1,...,n

F4: =20 exp[—0.2sqrt(n—'Z x ?)] - exp[n—'Z cos(2mx )] + 20 +e, i=1,...,n

Function F1 is strongly convex with only a single optimum (no local optima). Function F2 (Rosenbrock) has only a single optimum
as well, but has a deep groove when depicted in three dimensions that can make optimization difficult for a gradient method, and
F3 and F4 are highly multimodal but exhibit regularities in the placement of the local optima. Independent trials were conducted on
each function. The initial populations comprised 50 parents, distributed uniform ly over the continuous interval [-5, 5] (denoted
U(=5,5)) in each dimension. Each parent also was assigned from 1 to m strategy vectors, with m varied systematically over the
integers {1, 2,3,4, 5, 10,20} . That is, first a series of trials was conducted with 1 = 1, and then m =2, and so forth. Elements in the
parents’ initial strategy vectors were distributed U(0,1). One of strategy vectors was selected as the active vector uniformly at
random. One offspring was created from each parent by:

@ Determining if the active vector should be changed. With probability p_= 0.1, the active vector was changed to one of
the other m — 1 strategy vectors selected uniformly at random. (This was omitted in the case of m=1.)
(i) Using equations (1) and (2) to generate the offspring’s vector x', active 6, with the remaining inactive vectors & being

copied without alteration from the parent. Note that no lower bound was imposed on the strategy parameter values.

Selection used the tournament formulation offered in Fogel (1995, p. 137) with 10 competitions per individual. The 50 individuals
with the most wins in the tournament were saved as parents for the next generation. Evolution was halted after 200 generations
and the score of the best individual in the population was recorded. Each of these parameters governing population size, number
of competitions, p, or number generations was chosen because it represented a reasonable starting place for the investigation
and Fogel et al. (2001) made no claim about the optimality of the choices.

Five hundred independent trials were conducted at each setting of m. The mean best score in the population after 200
generations was recorded. However, the mean can be affected by outliers and the distributions of statistics of extreme values
(such as the best sample from a collection of samples) may not tend to follow a Gaussian distribution. To reduce the influence of
potential outliers, Fogel et al. (2001) adopted the standard practice oftrimming outliers (5 percent).

In an effort to verify functional relationships between m and the average best score obtained on each function, a second set
0f 2000 independent trials was again conducted at each setting of m on every function. Comparisons were made between the
behavior observed over 500 trials and that observed over 2000 trials, as will be indicated. The results on functions F1-F4 are
shown in Figures 1-4, respectively (from Fogel et al. 2001). In each case the figure in part (a) shows the mean trimmed best error
(MBE) score over 500 trials and the prospective functional relationship between 7 and MBE. Part (b) then shows the data for MBE
asafunctionc™ ° °  sver 2000 trials at each value of m. Across all four functions, the data obtained for 2000 trials validates
ihe relationship observed in the independent set of 500 triais. The best (least square) linear or nonlinear regression models
relating the data for each function are in close agreement and a large degree of the variability of the data is explained by each
model. The results indicate that the MBE generally decreases with increasing m, but that the specific mathematical relationship
between MBE and m varies by function.

The MBE is one important statistic in determining the effectiveness ofan optimization algorithm, but it is inherently limited
because it is a single point descriptor. A better sense of the benefit of increasing m can be obtained by examining the cumulative

Proc. of SPIE Vol. 4787 3
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Figure 1. For the function F1, a good prediction of the mean trimmed best error (MBE) after trimming five percent of the outliers
can be obtained by examining the inverse of the number of self-adaptive vectors used. (a) The data based on 500 trials at each
setting of m with a five percent trim. An analysis of various transforms of the data revealed the relationship MBE = 0.002 +
0.006m—", which yielded an R? value of 0.94. (b) The relationship was validated by 2000 additional trials. The new relationship was
MBE = 0.003 + 0.005m—', which had an R? value 0f 0.995. Thus there was good agreement between the coefficients of both models
and the functional relationship explains a very large amount of the variation in the data.
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Figure 2. For the function F2, a good prediction of the inverse of the MBE after trimming five percent of the outliers can be
obtained by examining the inverse of the number of self-adaptive vectors used. (a) The data based on 500 trials at each setting of

m with a five percent trim. An analysis of various transforms of the data revealed the relationship MBE—' = 0.044 — 0.011m—',
which yielded an R? value of 0.87. (b) The relationship was validated by 2000 additional trials. The new relationship was MBE—'

=0.046 — 0.015m—', which had an R? value of 0.96. There was good agreement between the coefficients of both models and the
functional relationship explains a very large amount of the variation in the data.
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Figure 3. For the function F3, a good prediction of the inverse of the MBE after trimming five percent of the outliers can be
obtained by examining the natural logarithm of the inverse of the number of self-adaptive vectors used. (a) The data based on 500
trials at each setting of m with a five percent trim. An analysis of various transforms of the data revealed the relationship MBE—
'=0.043 —0.001 In(m—"), which yielded an R? value of 0.633. (b) The relationship was validated by 2000 additional trials. The new
relationship was MBE—' = 0.043 — 0.001 In(m—"), which had an R? value of 0.948. There was good agreement between the
coefficients of both models and the functional relationship explains a very large amount of the variation in the data.
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Figure 4. For the function F4, a good prediction of the MBE after trimming five percent of the outliers can be obtained by
examining the inverse of the number of self-adaptive vectors used. (a) The data based on 500 trials at each setting of m with a five
percent trim. An analysis of various transforms of the data revealed the relationship MBE = 0.43 + 0.783m—", which yielded an R*
value of 0.981. (b) Therelationship was validated by 2000 additional trials. The new relationship was MBE = 0.465 +0.69m—, which
had an R? value of 0.995. There was good agreement between the coefficients of both models and the functional relationship
explains a very large amount of the variation in the data.
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distribution function (CDF) of the best error score on each of the 2000 trials as a function of m. For example, Figure 5 shows these
data for F1 for the case of 2000 trials with m € {1,2, 3,4, 5, 10,20} (taken from Fogel etal. 2001). Thex-axis indicates the best value
obtained and the y-axis indicates the percentile of that value. From Figure 5, when m = 1, approximately 60 percent of the 1900 trials
(2000 less the 5 percent that were trimmed) achieved a best value that was less than or equal to 0.005. In contrast, for m = 20,
approximately 80 percent of the trials achieved this same level of performance. There is a consistent improvement in the CDF with
increasing m; furthermore, the MBE is lower for increased m primarily because the search avoids poor solutions when using a
greater number of self-adaptive parameters. Figure 6 shows similar results for function F4, where the local minima are reflected

clearly in the CDF and entrapment in those minima is avoided to greater degree by increasing m. Fogel et al. (2001) provides the
complete set of figures for all the functions studied.

3. CONCLUSIONS

Just as the use of multiple parents (beyond two) in recombination may offer a more efficient optimization strategy in some
problems (Fogel and Fogel, 2001), the use of multiple strategy parameter vectors may also offer advantages. Fogel et al. (2001)
have shown that there is a consistent advantage for using more than one strategy vector when applied to four familiar test
functions. A cost-benefit analysis can be undertaken to determine an appropriate number of strategy vectors to employ based on
sample trials conducted on prospective new functions to examine. Figures 5-6 indicate that there may be significant overall
performance differences in therange of m € {1, ..., 5} but less significant differences in therange m € {5, ...,20}. Theevidence
suggests that the increased performance that arises from multiple strategy vectors stems most directly from a smaller probability
of stalling at a poor solution, as opposed to finding superior solutions. This evidence is consistent with the perspective that the
elements of the strategy parameter vector under the update equations (1) and (2) may decrease too rapidly, leading to stagnation.
Switching between search strategies can overcome this problem. Future efforts should concern finding the optimal settings of p,

as well as the potential for determining appropriate variations on this procedure on a problem-dependent basis and for problems
of greater dimension.
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