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1

Introduction

Modelling dynamics of multibody systems has been a subject of interest
in research centres for many years. Not only machines and mechanisms
themselves but also many of their constituent parts are multibody sys-
tems; therefore modelling these is essential in design. Computer programmes
using these models must enable us to take into account complex phenomena
connected with flexibility of links and friction and clearance in joints. The
difficulty in describing such problems lies in the fact that global phenomena
such as motion of a mechanism or machine, which last a few seconds, have
to be considered simultaneously with local phenomena, such as contact of
links in joints or vibrations of flexible links, the duration of which is tenths or
hundredths of seconds. This causes problems both at the stage of model for-
mulation and during integration of equations of motion of multibody systems.

One of the most challenging problems in modelling multibody systems is
flexibility of links. The occurrence of large base motion (for example rotation
of a crane body, motion of a vehicle, translation of manipulator arms) can
cause vibrations of flexible links. There is also an opposite effect: vibrations
of flexible links can disturb desired base motion. This is especially important
when positioning is a concern. In order to compensate flexibility of links, drive
systems have to be equipped with additional control systems.

For many years commercial packages such as MSC.Adams or Dads have
been used for modelling multibody systems. They allow not only kinematic
analysis of complex mechanisms to be carried out, but also calculations of the
dynamics of complex multibody systems, and they enable flexibility of links to
be taken into account by means of special interfaces. To this end, additional
models of flexible links have to be formulated, usually employing the finite
element method (for example in Ansys or MSC.Nastran); then modal analysis
necessary for the reduction of generalised coordinates has to be carried out;
and finally a simplified model of a flexible link obtained in such a way has
to be transferred to the package for dynamic analysis of multibody systems.
Commercial packages are used mainly in large research and computational
centres because they require considerable training in the methodology and
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software. Moreover, it is necessary to know the appropriate, often very detailed
data for calculations. Thus the use of those commercial packages is limited
and many research centres are still looking for simple yet effective methods
for analysing the dynamics of multibody systems.

One such method is the rigid finite element method, which is the subject
of this book. It can serve both as an initial analysis before more traditional
and complex methods are used and as an independent method. Its advantages
are numerous: first, it is simple (the basic idea of the method is a division of
flexible links into rigid elements connected with spring-damping elements);
secondly, it adopts a uniform approach to describe rigid and flexible links;
thirdly, it is numerically effective; fourthly, it can be applied to analyse both
small and large deformations; finally, it can be widely and successfully used in
industrial practice. Therefore the authors believe that many engineers and re-
searchers will benefit from acquaintance with the rigid finite element method.

The method was formulated at the Technical University of Gdansk and
its foundations were first described by Kruszewski et al. (1975). The idea of
the method is to discretise flexible links into rigid elements containing iner-
tial features of bodies; these rigid elements are connected by massless and
non-dimensional spring-damping elements. In Kruszewski et al. (1975) the
mathematical models and all information necessary for computer implementa-
tion of the method are presented. The models and their application in practice
are limited to analysis of deflections and vibrations in a given position, which
means that only systems with a stable configuration have been considered.
Wittbrodt (1983) presented a generalisation of the method of rigid and flexible
elements for planar systems with changing configuration, and its application
in dynamic analysis of structures was described by Kruszewski et al. (1984).
The method has been applied in Poland for the dynamic analysis of mecha-
nisms, machine tools, cranes, ship drive systems and even to vibration analysis
of hulls.

Wojciech (1984) presented a modification of the method which enabled
large deflections of flexible links of planar linkage mechanisms with changing
configuration to be analysed. An approach in which the system analysed is
divided into subsystems, and flexible links are discretised by means of the
rigid finite element method, is applied in both monographs (Wittbrodt, 1983;
Wojciech, 1984). Equations of the dynamics of subsystems taking into account
reactions in subsystem connections have been formulated on the basis of
Lagrange equations and then the subsystems have been connected by means of
constraint equations. Such an approach is standard when absolute coordinates
are used (Gronowicz, 2003).

The classical rigid finite element method as well as its modified version
were generalised for spatial systems with changing configuration in Woj-
ciech (1990); Adamiec-Wéjcik (1992), Wittbrodt and Wojciech (1995) and
Adamiec-Wdjcik (2003). In these the rigid finite element method was com-
bined for the first time with the method of homogenous transformations.
This method, widely used in robotics (Paul, 1981; Craig, 1988), enables us to
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represent the transformation of coordinates, for both translation and rotation
of a rigid body, by means of one matrix operation. Adamiec-Wdjcik (2003)
also presents a general algorithm for formulation of equations of motion of
multibody systems using joint coordinates and homogenous transformations.

This book presents a new, different formulation of the rigid finite element
method. It is assumed that, for both the classical and modified formulations,
homogenous transformations will be consistently used together with joint co-
ordinates for the kinematic description of multibody systems. Joint coordi-
nates enable us to reduce considerably the number of generalised coordinates
of the system as compared to methods using absolute coordinates. The mod-
els and methods presented allow large deformations of flexible links to be
considered. Simplified versions of models (called linear), which can be used
when deflections of links are small, are also discussed. The models formulated
give a unified approach both in cases when open and closed kinematic chains
are considered as well as when the system consists of either only rigid links
or when rigid and flexible links alternate. We think that this is one of most
important features of the method and the description of multibody dynamics.

We assume that the reader knows theoretical mechanics at the level of a
mechanical engineering graduate and is able to use some elements of analytical
mechanics, especially techniques concerned with derivation of equations of
motion using the Lagrange equations. As for mathematics, we expect the
reader to be competent in dealing with matrix calculations and differential
calculus.

In Chap. 2 the basics of transformations of coordinates and homogenous
transformations are presented. In addition the equations of motion of rigid
multibody systems are formulated using joint coordinates and homogenous
transformations. The equations of motion of a new link attached to an existing
kinematic chain are formulated and it is shown how they modify the equations
of preceding links. The equations formulated in this chapter are then used
throughout the following chapters.

The formulation of the classical rigid finite element method is presented
in Chap. 3. The equations of motion of a flexible link divided into rigid ele-
ments with six degrees of freedom (three translations and three rotations) are
derived. The energy of spring deformation and the dissipation of energy in
spring-damping elements are calculated. A linear model with simpler formu-
lae, which is useful for analysis of small vibrations, is also discussed. At the end
of the chapter the methods and formulae for calculations of the parameters
of both rigid (rfe) and spring-damping elements (sde) are given.

Chapter 4 deals with the modification of the rigid finite element method
used to discretise beam-like links with bending and torsional flexibility. Non-
linear and linear models for analysis of large and small vibrations, respectively,
are discussed. In the modified formulation of the method each rfe has only
three degrees of freedom in relative motion, which are rotation angles. Thus,
in relation to the classical formulation, the number of degrees of freedom is
considerably smaller.
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The problems of numerical calculations are discussed in Chap.5. At the
beginning we present the application of the methods described in Chaps. 3
and 4 (both linear and non-linear formulation) to analysis of the free and
forced vibrations of a beam. The reader can follow detailed formulations of
various models. Computer simulations show the influence of the model on
the results of calculations. Problems concerning the integration of equations
of motion of systems discretised using the rigid finite element method are
also considered, with special attention to the integration of systems of stiff
differential equations.

Chapter 6 is concerned with verification of the method. The results of nu-
merical simulations obtained by means of the rigid finite element method are
compared with those obtained by other authors who used different methods,
and with results of experimental measurements. The method has been verified
both for small and large deformations. An example of vibration analysis of
a viscoelastic beam shows how the rigid finite element method can be used
to analyse large deflections of whippy beams when complex physical relation-
ships describe material features of flexible links. This chapter demonstrates
that the rigid finite element method in both formulations gives results com-
patible with those published by other authors and with those obtained from
experimental measurements.

Practical applications of the method in dynamic analysis of machines and
mechanisms are given in Chap. 7. They concern dynamic analysis of a crane,
the telescopic rapier in textile machine, and the A-frame of a ship. The chapter
shows not only how to proceed with a particular machine but also the many
applications of the method.

We would like to thank Krzysztof Augustynek and Andrzej Urbas for
their considerable editorial help and our colleagues, co-authors of publica-
tions, whose research results we used in this book.
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Homogenous Transformations

Displacement of a body from one position to another requires two operations:
translation and rotation. In classical mechanics general motion of a body can
be treated as a combination of translation and rotation about a fixed point. In
robotics joint coordinates and homogenous transformations are generally used
for description of rigid body motion (Craig, 1988). Joint coordinates enable us
to describe the motion of a system of rigid bodies, which form open or closed
kinematic chains, by using the least number of generalised coordinates. This
leads to a reduction in the dimension of equations of motion describing the
dynamics of multibody systems as compared to absolute coordinates, which
are used more often. However, the equations are more complex and their
derivation requires a specific approach, which will be described in this chapter.

Homogenous transformations allow us to present two operations (trans-
lation and rotation) in the form of one complex operation. The consequence
is that the transformation of coordinates from one system to another can be
expressed by means of only one multiplication of a transformation matrix by
a position vector.

2.1 Transformation of Coordinates and Homogenous
Transformations

In order to describe the position and orientation of a body in space, coor-
dinate systems (called “frames of reference” by some authors) are defined
and the rules of coordinate transformations are set out. Mathematical rela-
tions are formulated so that coordinates of a point in any coordinate system
can be defined if the coordinates of this point in a given coordinate system
and the parameters defining the reciprocal relation of the two systems are
known.

Let us assume that two coordinate systems {A} and {B} (Fig.2.1) are
given. The method of describing the relation of those systems is as follows.
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Ax1

Fig. 2.1. Coordinate systems {A}, {B}. “rpz,,, is the vector defining the coordinates
of the origin of system {B} with respect to {A}. *X,,* X5, X3,% X,,7 X,,” X3
are the unit vectors of coordinate systems {A} and {B}, respectively

The position of the origin of coordinate system {B} with respect to {A}
is defined by the components of the vector:

A
TB,1

Aerg:= Arpa |, (2.1)
Arp
while the orientation of {B} in {A} is defined by the elements of the rotation
matrix:

BYTA% BYWTAY. BWTAX B B B
Xl X1 X2 X1 X3 X1 Arll AT12 AT13
A S s & 2 & & B B B
AR = | EXTAR, PRTAR, BXTAR, | = |Sror Brep Tres |, (22)
- B ; 5 o 5 B B B
BXTAX: BXTAX; BXI4Xs AT31 AT32 AT33

where ATB is a scalar product of A and B.

Matrix 4R is a matrix of direction cosines of the axes of coordinate sys-
tem {B} with respect to system {A}. Its columns and rows are orthonormal
vectors, which results in the following relation:

AR =TR'="R", (2.3)

This means that the inverse matrix to the rotation matrix is its transpose. It
is important to note that the position of the body to which coordinate system
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Fig. 2.2. Transformation of coordinates

{B} is assigned is defined by vector “rp,, , and 4R describes its orientation.
If we know the position and orientation of {B} with respect to {A}, then,
according to Fig. 2.2, the following can be written:

Ar= 4R Br+ “rp,, (2.4)

where Br is the vector of coordinates of point P with respect to {B} and “r
is the vector of coordinates of point P with respect to {A}.

Among the nine components of rotation matrix 4R only three are inde-
pendent because six relations resulting from the orthonormality of the matrix
can be defined, which are as follows. If matrix #R is written in the following
form:

AR = [4X; 4X; 4X5]; (2.5)
where
BXTAX, BXIAX, PXTAX,
A%, = | PXTAK, |, A% = |FXTAX, |, 4= | PXIAK, |
BX’II‘AXS BXEAXS BX3TAX3
the following takes place:
AXTAX, =1, AXTAR, =1, ARTAK, =1, (2.6a)
AXT4X, =0, 4XT4X;=0, 4XT4X;=0. (2.6b)

This means that the reciprocal location of the axes of systems {B} and
{A} can be uniquely described by means of three parameters. There are many
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methods of choosing those parameters (Blajer, 1998; Jurewi¢, 1984; Shabana,
1998). Here we discuss only one, in which those parameters are called Euler
rotation angles ZYX (Blajer, 1998).

Let us consider in detail the case when the origins and axes of coordinate
systems {B} and {A} coincide (Fig.2.3a), and the problem is to define the
rotations of system {B} about its axes, which leads to the situation as in
Fig. 2.3b.

In order to convert the system from position (a) to (b), we will proceed as
follows:

— First, coordinate system {B} is rotated by angle @3 about axis 4X3 =
BX3 and coordinate system {B}” is obtained.

~ Secondly, the coordinate system obtained is rotated by angle ¢, about
axis "Xy, which results in coordinate system {B}’.

~ Finally, the system obtained is rotated by angle ¢, about axis 2'X; to
achieve the position as in Fig. 2.3b.

This procedure is shown in Fig. 2.4.

In order to transform the body from position (b) to (a) (Fig.2.3), one
should proceed in the reverse order, which means the following should be
performed:

~ Rotate the system by —; about axis ? XJ
— Rotate the system by —¢, about axis X2
— Rotate the system by —p3 about axis &~ X3

The rotation matrix parameterised by means of Euler angles ZYX can be
written in the form:

(b)
(a) {A}, {B}

b, 2%,

Fig. 2.3. Initial (a) and final (b) location of coordinate systems {A} and {B}
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(a) |

AXa=5"X,

NI N

Fig. 2.4. Euler angles ZYX

AR =4R E'RER =Rs(03)Ra (02) Ru (1) =

[cps —sp3 0 cpa 0 s 1 0 0
sps3 cp3 0 0 1 0 0 cp1 —sp1 (2.7)

| O 0 1 —spa 0 cpa 0 sp1  cpr

[ coscpas  cp3spaspr — spscpr  cp3spacer + sp3spl
= | Sp3Cp2  SP3SP2SP1 T CP3CP1  SP38P20P1 — CP3SPL |
L —Spo CPa2SP1 CP2CP1

where sp; = siny;, cp; = cos ;.
Angles @3, @2, 1 are called yaw, pitch and roll angles, respectively.
Matrix 4R defined by (2.7) can also be interpreted as the rotation op-
erator. If the coordinates of point P with respect to coordinate system {B}
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B
By ‘ X3
3
B
Xp2 P
i\ B
B
Xp2 E Xp3
B’ H By
Xp’3| 2 X2
| 1
P
B'e
X,
P4
B)A(1=BI)A(1

Fig. 2.6. Rotation by —¢;

define vector Prp (Fig.2.5), then the coordinates of this point with respect to
{A} can be calculated by carrying out successive rotations described in (2.7)
as follows:

1. Rotation by —¢y
Coordinate systems { B} and { B’} obtained as a result of rotation by —¢,
about axis BXl are shown in Fig. 2.6.
Coordinates of point P with respect to coordinate system {B’} are as

follows:
B’IPJ =Bzp,, (2.8a)
BIl'P,Q = BfI/'P,2CS01 == B$P,35801, (2.8b)
BI

Tp3 = BLEP,28<P1 + BZI?P,?,CSOl, (2.8¢)
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B’xs
B"X

Fig. 2.7. Rotation by —p2

which can be written as:
Brp =Ri(p1)Prp. (2.9)

. Rotation by —¢2
Figure 2.7 presents coordinate systems {B’ } and {B”} obtained by
having rotated { B’} by angle —p2 about axis B'X, =B"X,.
Coordinates of point P with respect to coordinate system {B”} are
defined by formulae:

= rTp1 = B Tp1CP2 +B Tp3SP2, (2.10a)
B aps=Fapy, (2.10b)
‘wp3 =~ ap1sps +PTp3cps, (2.10c)

or in the vector form:

B"rp = Ra(p2)" rp = Ra(p2)Ra (1) Prp. (2.11)

. Rotation by angle —3

Coordinate systems {B”} and {A} are shown in Fig. 2.8. Coordinate sys-
tem {A} is the result of rotation of {B”} about axis B'X3 = 4X3 by
angle — 3.

Coordinates of point P with respect to coordinate system {A} are now as
follows:

1" "

Azp1 =" xpicps P zpases, (2.12a)
Azpo =T ap1sps +7 wpaces, (2.12b)

Arps=F zp; (2.12¢)



