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PREFACE

A First Course in Abstract Algebra introduces three related topics: number the-
ory (division algorithm, greatest common divisors, unique factorization into
primes, and congruences), group theory (permutations, Lagrange’s theorem, ho-
momorphisms, and quotient groups), and commutative ring theory (domains,
fields, polynomial rings, homomorphisms, quotient rings, and finite fields). The
final chapter combines the preceding chapters to solve some classical problems:
angle trisection, squaring the circle, doubling the cube, construction of regular n-
gons, and impossibility of generalizing the quadratic, cubic, and quartic formu-
las to polynomials of higher degree. Such results make it clear that mathematics
is, indeed, one subject whose various areas do bear one on the other.

A complicating factor, permeating introductory courses, is that this may be
one of the first times students are expected to read and write proofs. This book is
my attempt to cover the required topics, to give models of proofs, and to make it
all enjoyable.

There is enough material here for a two-semester course, even though many
readers may be interested in only one semester’s worth. All the “usual suspects”
are assembled here, however, and I hope that instructors will be able to find those
theorems and examples they believe to be appropriate for a first course. When
teaching a one-semester course, one must skip parts of the text; however, it is
often possible simply to state and use theorems whose proofs have been omitted.
For example, if the discussion of generalized associativity is omitted, one can
safely cite the laws of exponents; if the proof of Gauss’s lemma is omitted, one
can quote it and still derive irreducibility criteria for polynomials in Q[x]. Here
is one possible selection of topics for a one-semester (40—45 lecture) course.

Do all of Chapter 1 except Theorems 1.22 and 1.41 (for the moment,
“Theorem”™ means Lemma, Theorem, or Corollary), Examples 1.1, 1.2, 1.3, and
1.5, and the section on calendars.
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In Chapter 2, do not cover Theorems 2.19, 2.21, 2.21’, 2.29 through 2.40,
2.53 through 2.60, 2.65,2.72,2.73,2.80,2.81, 2.84, 2.85, and 2.86 (but note that
the introduction of the dihedral groups has now been omitted), and do not assign
Examples 2.5, 2.17, 2.18, 2.24, 2.34, 2.35, 2.36, and 2.39.

In Chapter 3, do not cover Theorems 3.37, 3.38, 3.39, 3.52 through 3.56,
3.67 through 3.72, Example 3.27, and the section on Latin squares. Skip Chapter 4.

I do not enjoy reading introductory chapters of books that consist wholly
of “tools” needed for understanding subsequent material. By the Golden Rule, I
do not inflict such greetings on my readers. Rather than beginning with a dis-
cussion of logic, sets, Boolean operations, functions, equivalence relations, and
so forth, I introduce such tools as they are needed. For example, functions and
bijections are introduced with permutation groups; equivalence relations are in-
troduced in Chapter 3 to construct fraction fields of domains (I recognize that this
late entry of equivalence relations and equivalence classes may annoy those who
prefer introducing quotient groups with them; however, I feel that readers first
meeting cosets and quotient groups do not need the extra baggage of an earlier
discussion of equivalence classes). The first section of Chapter 1 does introduce
an essential tool, induction, but induction also serves there as a vehicle to intro-
duce more interesting topics such as primes and De Moivre’s theorem.

Several results that are not usually included in a first course have been in-
cluded just because they are interesting and accessible applications; they should
not be presented in class because they are designed for curious readers only. In
Chapter 1 on number theory, congruences are used to find on which day of the
week a given date falls. In Chapter 2 on groups, the group of motions of the plane
is used to describe symmetry of planar figures, the affine group is used to prove
theorems of plane geometry, and a counting lemma is applied to solve some dif-
ficult combinatorial problems. In Chapter 3 on rings, we construct finite fields,
and then we use them to construct complete sets of orthogonal Latin squares. The
last chapter is both a dessert and an appetizer. After a short discussion of vector
spaces and dimension (which reinforces the categorical viewpoint of objects and
morphisms), we show how modern algebra solves several classical problems of
geometry. After giving the quadratic, cubic, and quartic formulas, we present an
analogy between symmetry groups of figures and Galois groups, and we prove
the theorem of Abel and Ruffini that there is no generalization of the classical
formulas to higher degree polynomials. This discussion can serve as an intro-
duction to Galois Theory.

Since Birkhotf and Mac Lane created this course half a century ago, there
has been mild controversy about the order of presentation: should the exposition
of groups precede that of rings, or should rings be done first (Birkhoff and Mac
Lane do rings first). There are arguments on both sides and, after being a rings
first man for a long time, I have come to believe that it is more reasonable to do
groups first. The definition of group is very simple, and permutation groups offer
an immediate nontrivial example. Many elementary properties of rings are much
simpler once one has studied groups. Indeed, the very definition of a ring is more
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palatable once one has seen groups. As a second example, the quotient group con-
struction can be used to construct quotient rings (since rings are additive abelian
groups and ideals are normal subgroups), but the quotient ring construction cannot
be used directly in constructing quotient groups. Thus, discussing groups first is
more efficient than the alternative. Finally, whenever [ have taught rings first, [ have
found an initial confusion in the class about the relation of general rings to the par-
ticular ring Z of integers. There is a need to develop some arithmetic properties of
Z, and bouncing back and forth between commutative rings and Z creates an un-
necessary difficulty for many students. In particular, students become unsure about
which properties of Z may be assumed and which need proof. The organization
here avoids this problem by separating these two subjects by group theory.

Giving the etymology of mathematical terms is rarely done. Let me explain,
with an analogy, why I have included derivations of many terms. There are many
variations of standard poker games and, in my poker group, the dealer announces
the game of his choice by naming it. Now some names are better than others. For
example, “Little Red” is a game in which one’s smallest red card is wild; this is a
good name because it reminds the players of its distinctive feature. On the other
hand, “Aggravation” is not such a good name, for though it is, indeed, suggestive,
the name does not distinguish this particular game from several others. Most terms
in mathematics have been well chosen; there are more red names than aggravating
ones. An example of a good name is even permutation, for a permutation is even if
itis a product of an even number of transpositions. Another example of a good term
is the parallelogram law describing vector addition. But many good names, clear
when they were chosen, are now obscure because their roots are either in another
language or in another discipline. The term mathematics is obscure only because
most of us do not know that it comes from the classical Greek word meaning “to
learn.” The term corollary is doubly obscure; it comes from the Latin word mean-
ing “flower,” but what do flowers have to do with theorems? A plausible explana-
tion is that it was common, in ancient Rome, to give flowers as gifts, and so a corollary
is a gift bequeathed by a theorem. The term theorem comes from the Greek word
meaning “to watch” or “to contemplate” (theatre has the same root); it was used by
Euclid with its present meaning. The term lemma comes from the Greek word mean-
ing “taken” or “received;” it is a statement that is taken for granted (for it has already
been proved) in the course of proving a theorem. On the other hand, I am not too
fond of the mathematical terms normal and regular for, in themselves, they convey
no specific meaning. Since the etymology of terms often removes unnecessary ob-
scurity, it is worthwhile (and interesting!) to do so.

It is a pleasure to thank Dan Grayson, Heini Halberstam, David G. Poole, Ed
Reingold, and John Wetzel for their suggestions. I also thank the Hebrew University
of Jerusalem for the hospitality given me as I completed my manuscript. I thank the
several reviewers who carefully read my manuscript and made valuable suggestions.
They are Daniel D. Anderson, University of lowa; Michael J. J. Barry, Allegheny
College; Brad Shelton, University of Oregon; Warren M. Sinnott, Ohio State
University; and Dalton Tarwater, Texas Tech University. And [ thank George Lobell,
who persuaded me to develop and improve my first manuscript into the present text.

Joseph J. Rotman
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NUMBER THEORY

INDUCTION

There are many styles of proof, and mathematical induction is one of them. We
begin by saying what mathematical induction is not. In the natural sciences,
inductive reasoning is the assertion that a phenomenon that has always occurred
in the past will always occur. Thus, one says that the sun will rise tomorrow morn-
ing because, from the dawn of time, the sun has risen every morning. This is not
a legitimate kind of proof in mathematics, for although a phenomenon may have
been observed to occur many times, it need not always occur. Consider, for ex-
ample, the polynomial

f(n)=n?—n+4l.

A prime number is a positive integer p > 2 that cannot be factored into smaller
positive integers; i.e., there do not exist positive integers a < p and b < p with
p = ab. An integer a > 2 that is not prime is called composite. The first few
primes are 2, 3, 5,7, 11, 13, 17, 19, 23, 29, 31, 37,41, ....

Consider the assertion that f (n) is always prime. Evaluating f (n) forn =1,
2,3, ..., 40 gives the numbers

41,43,47,53,61,71,83,97, 113, 131,

151, 173,197, 223, 251, 281, 313, 347, 383, 421,

461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971,
1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601.
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It is not too difficult to show that every one of these numbers is prime. Inductive
reasoning predicts that all the numbers of the form f (n) are prime. But the next
number, f(41) = 1681, is not prime, for f(41) = 412 — 41 + 41 = 41°, which is,
obviously, composite. Thus, inductive reasoning is not appropriate for mathe-
matical proofs.

Here is an even more spectacular example (which I first saw in an article
by W. Sierpinski). Recall that perfect squares are numbers of the form n’, where
n is an integer; the first few perfect squares are 1, 4,9, 16, 25, 36, .... For each
n 2 1, consider the statement

S(n): 991n% + 1 is not a perfect square.

The nth statement, S(n), is true for many n; in fact, the smallest number n for
which S(n) is false is

n =12,055.735.790,331,359.447.442 538,767
=1.2x10%.

(The original equation is an example of Pell’s equation—an equation of the form
x2=dy* + 1, where d is squarefree; that is, it is not divisible by any square larger
than 1—and there is a way of calculating all possible solutions of it.) The most
generous estimate of the age of the earth is 10 billion (10,000,000,000) years, or
3.65 x 10'2 days, a number insignificant when compared to 1.2 x 102, If, start-
ing from the very first day after creation, one verified statement S(n) on the nth
day, then there would be today as much evidence of the general truth of these
statements as there is that the sun will rise tomorrow morning!

We have seen what (mathematical) induction is not; let us now discuss what
induction is. Suppose one has determined that statements S(n) are true for many
values of n, and then guesses that all the S(n) are true. Induction is a technique
of proving that all the statements S(n) are, indeed, true. For example, the reader
may check that 2" > n for many values of n, but is this inequality true for every
value of n? We will soon prove, using induction, that this is so.

Our discussion is based on the following property of positive integers (usu-
ally called the well ordering principle).

Least Integer Axiom. There is a smallest integer in every nonempty collection
C of positive integers.

Saying that C is nonempty merely means that there is at least one integer in
the collection C. Although this axiom cannot be proved (it arises in analyzing
what integers are), it is certainly plausible. Consider the following procedure.
Check whether | belongs to C: if it does, then it is the smallest integer in C.
Otherwise, check whether 2 belongs to C; if it does, then 2 is the smallest inte-
ger; if not, check 3. Continue this procedure until one bumps into C; this will
occur eventually, for C is nonempty.

We remark that the least integer axiom holds for nonempty collections C
of nonnegative integers as well. If C contains 0, then 0 is the smallest integer in
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C; otherwise, C is actually a nonempty collection of positive integers, and the
original least integer axiom now applies to C.
We begin by recasting the least integer axiom.

Theorem 1.1 (Least Criminal). Let S(1), S(2), S3). .... S(n). ... be statements,
one for each n 2 1. If some of these statements are false, then there is a first false
statement.

Proof. Let C be the collection of all those positive integers n for which S(n)
is false: by hypothesis, C is nonempty. The least integer axiom provides a small-
estinteger m in C, and S(m) is the first false statement. e

This seemingly innocuous theorem is useful.

Theorem 1.2. Every integer n 22 is either a prime or a product of primes.

Proof. Were this not so, there would be “criminals,” that is, integers n > 2
neither prime nor products of primes; a least criminal m is the smallest such in-
teger. Since m is not a prime, it is composite; there is thus a factorization m = ab
with 2 <a<mand 2 <b < m. Since m is the least criminal, both a and b are “hon-
est,” i.e., each is either prime or a product of primes. Therefore, m is a product of
primes, which is a contradiction. e

Theorem 1.3. If m =2 is a positive integer that is not divisible by any prime p
with p < ~m | then m is a prime.

Proof.! If m is not prime, then m = ab, where a < m and b < m are positive
integers. If a > Vm and b > Vm, then m = ab > mJm = m, a contradiction.
Therefore, we may assume that a < v'm . By Theorem 1.2, a is either a prime or
a product of primes, and any (prime) divisor of « is also a divisor of m. Thus, if
m is not prime, then it has a “small” prime divisor p: i.e., p < Vm. The contra-
positive says that if 7z has no small prime divisor, then m is prime.

One can use Theorem 1.3 to see that the numbers f (n) = n> — n + 41, for
1 <n <40, are all prime. For example, consider 1447 = 382 — 38 + 41. To check
whether 1447 is prime, it suffices to check if 1447 is divisible by some prime
p with p < +/1447 = 38.04: if 1447 is not divisible by some one of 2, 3, 5, ...,
37, then it is prime. There are 12 such primes, and one can now check that none
of them is a divisor of 1447.

'"The contrapositive of an implication **P implies Q" is the implication “not Q implies not
P.” For example, the contrapositive of “If a series Xa,, converges, then lim,_,., a, = 07 is “If
lim, e a, # 0, then Za, diverges.” If an implication is true, then so is its contrapositive; con-
versely, if the contrapositive is true, then so is the original implication. The strategy of this proof
is to prove the contrapositive of the original implication. Although a statement and its contra-
positive are logically equivalent, it is sometimes more convenient to prove the contrapositive.
Proving the contrapositive is also called an indirect proof, or a proof by contradiction.
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Mathematical induction is a version of least criminal that is more convenient
to use. The key idea is just this. Imagine a stairway going up to the sky. If its first
step is white and if the next step above a white step is also white, then all the steps
of the stairway are white. (One can trace this idea back to Levi ben Gershon in
1321. There is an explicit description of induction, cited by Pascal, written by
Francesco Maurolico in 1557.) For example, the statement 2" > n for all n =2 17
can be regarded as an infinite sequence of statements (the stairway to the sky):

20>1;22>2;23>3;24>4;25>5; ...
Certainly, 2! = 2 > 1. Multiplying both sides by 2, we have 2 > 2 x | = 2; mul-
tiplying again gives 23>2x2>3;2*>2x3>4; ...;if 219> 100, then 2! =
2x2'%>72 % 100> 101. There is nothing magic about the exponent 100; once

we have reached any stair, we can climb up to the next one. This argument will
be formalized in Theorem 1.5.

Theorem 1.4 (Mathematical Induction). Given statements S(n), one for each
n 21, suppose that

(1) S(1) is true, and
(11) if S(n) is true, then S(n + 1) is true.
Then S(n) is true for all n > 1.

Proof. We must show that the collection C of all those positive integers k
for which the statement S(k) is false is empty.

If, on the contrary, C is nonempty, then there is a least criminal S(m). Since
S(1) is true, by (i), we must have m > 2. This implies that m — 1 > 1, and so there
is a statement S(m — 1) [there is no statement S(0)]. As S(m) is the least crimi-
nal, S(m — 1) must be honest; that is, S(m — 1) is true. But (ii) says that S(m) =
S([m — 1] + 1) is true, and this is a contradiction. We conclude that C is empty
and hence that all the statements are true. e

Let us now illustrate how to use (mathematical) induction.

Theorem 1.5. 2" > nforalln>1.
Proof. The nth statement S(n) is
S(n): 2" > n.
There are two steps required for induction.
Base step. The initial statement
S(h): 2'>1
is true, for2' =2 > 1.

Inductive step. If S(n) were true, then S(n + 1) would also be true; that is,
using the inductive hypothesis S(n), we must prove
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Sn+ 1) 2"l >pn+ 1.

If 2" > n were true, then multiplying both sides of its inequality by 2 would give
the valid inequality:

2m+l =2 x 2" > 2n.

Now 2n=n+n=>n+ 1 (because n > 1), and hence 2! > 2n > n + 1, as desired.
Having verified both the base step and the inductive step, we conclude that 2" > n
foralln=>1. e

Induction is plausible in the same sense that the least integer axiom is plau-
sible. Suppose that S(1), S(2), S(3), ... are statements with S(n + 1) true when-
ever S(n) is true. If, in addition, S(1) is true, then S(2) is true; the truth of S(2)
now gives the truth of S(3); the truth of S(3) now gives the truth of S(4); and so
forth. Induction replaces the phrase and so forth by the inductive step; this guar-
antees, for every n, that there is no obstruction in the passage from any statement
S(n) to the next one S(n + 1).

Here are two comments before we give more illustrations of induction. First,
one must verify both the base step and the inductive step; verification of only one
of them is inadequate. For example, consider the statements S(n): n2 = n. The base
step is true, but one cannot prove the inductive step (of course, these statements
are mostly false). Another example is given by the statements S(n): n=n + 1. It
is easy to see that the inductive step is true: if n = n + 1, then adding 1 to both
sides givesn + 1 =(n+ 1) + 1 =n + 2, which is the next statement S(n + 1). But
the base step is false (of course, all these statements are false).

Second, when first seeing induction, many people suspect that the inductive
step is circular reasoning: one is using S(n), and this is what one wants to prove!
A closer analysis shows that this is not at all what is happening. The inductive step,
by itself, does not prove that S(n + 1) is true. Rather, it says that if S(n) were true,
then one could prove that S(n + 1) would also be true. In other words, the induc-
tive step proves that the implication “If S(n) is true, then S(n + 1) is true” is cor-
rect. The truth of this implication is not the same thing as the truth of its conclusion.
For example, consider the two statements: “Your grade on every exam is 100%”
and “Your grade in the course is A.” The implication “If all your exams are per-
fect, then you will get the highest grade for the course” is true. Unfortunately, this
does not say that it is inevitable that your grade in the course will be A. Our dis-
cussion above gives a mathematical example: the implication “If n = n + 1, then
n+1=n+2"1is correct, but the conclusion “n+ 1 =n + 2" is false.

Theorem 1.6. 1 +2+ - +n= in(n+1)foreveryn>1.

Proof. The proof is by induction.

Base step. If n =1, then the left side is | and the right side is Ha+n=1,
as desired.
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Inductive step. Tt is always a good idea to write the (n + 1)st statement
S(n + 1) (so one can see what has to be proved). We must show that

142+ +n+n+1)=n+ Hn+2).
By the inductive hypothesis, i.e., using S(n), the left side is
[M+2+—+n]+n+D=3nn+1)+m+1),
and high school algebra shows that sn(n+ 1)+ (n+ 1) = Y (n+1)(n+2).Byin-

duction,? the formula holds foralln>1. e

There is a story told about the young Gauss. One of his teachers asked the
students to add up all the numbers from 1 to 100, thereby hoping to get some time
for other tasks. But Gauss quickly volunteered that the answer was 5050. Here is
what he did (without induction). Let s denote the sum of all the numbers from 1
to 100: s=1+2+ - +99 + 100. Of course, s = 100 + 99 + --- + 2 + 1. Arrange
these nicely:

s= 1 + 2+-+4+ 99+ 100
s=100+ 99+--+ 2+ |1,
add:
25 =101 + 101 + - + 101 + 101 (100 times),

and solve: s = 3(100 x 101) = 5050. The same argument works for any number
n in place of 100. Not only does this give a new proof of Theorem 1.6, it also
shows how the formula could have been discovered.

Theorem 1.7. Assuming the product rule for derivatives, D(fg) =
(Df)g +f(Dg),
D(x") =nx""" foralln>1.
Proof. We proceed by induction.
Base step. If n = 1, then we ask whether D(x) = x" = 1. Now
D(f (x)) = lim, o (1/h)[f (x + h) = f(x)].
When f (x) = x, therefore, D(x) = lim,_,, (1/A)|[x+h—x]= lim,_, h/h=1.

Inductive step. We must prove that D(x"*')=(n+ 1) x", and we are allowed
to use D(x") = nx"~'. Since x"*! = x"x, the product rule gives

D(x"™1) = D(x"x) = D(x") x + x"D(x)
=x(nx" N +x"l =(n+ 1) x".
We conclude that D(x") = nx"is true foralln>1. e

2Induction, having a Latin root meaning “to lead,” came to mean “prevailing upon to
do something™ or “influencing.” This is an apt name here, for the nth statement influences the
(n + 1)st one.
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The base step of an induction may be an integer other than 1. For example,
consider the statements

S(n): 2" > n2.
This is not true for small values of n: if n = 2 or 4, then there is equality, not in-
equality; if n = 3, the left side, 8, is smaller than the right side, 9. However, S(5)
is true, for 32 > 25.
Theorem 1.8. 2" > n? is true for all n > 5.
Proof. We have just checked the base step S(5). In proving

Stn+1): 21> (n+ 1),
we are allowed to assume that n > 5 (actually, we will need only n = 3) as well
as the inductive hypothesis. Multiply both sides of 2" > n* by 2 to get

2ml =2 x 20> 202 = n? + n? = n’ + nn.

Since n = 5, we have n = 3, and so

nn>23n=2n+n2=2n+1.
Therefore,

2l s 2y i >n2+2n+ l=(n+1)2 o

We have seen that the base step of an induction can beginatn=1orn=>5.
Indeed, the base step of an induction can begin at any integer k; of course, the
conclusion is that the statements are true for all n > k. Assuming that there is a
statement S(0), one may also start an induction with base step n = 0.

EXERCISES

1.1. Find a formula for 1 + 3+ 5 + - + (2n — 1), and use mathematical in-
duction to prove that your formula is correct.

Remark. Inductive reasoning is used in mathematics to help guess what
might be true. Once a guess has been made, it must still be proved, perhaps
using mathematical induction, perhaps by some other method.

1.2. For any n >0 and any r # |, prove that
l+r+r2+r3+ - +r"=—-r"H(l—r).
1.3. Show, for all n > 1, that 10" leaves remainder 1 after dividing by 9. (Hint:
This may be rephrased to say that there is an integer ¢, with 10" =9¢, + 1.)
1.4. Prove that 12 + 22+ - +n2=nn+ 1)2n + 1)/6.
1.5. Provethat I+ 23+ -+ n3=(1 +2 4 - + n)%
1.6. Prove that 14 + 2% + - + n* = n%/5 + n*/2 + n3/3 — n/30.

1.7. (i) Prove that 2" > n? for all n > 10.
(ii) Prove that 2" > n* for all n > 17.



1.8.

1.9.
1.10.

1.11.

1.12.

Number Theory Ch.1

Let g,(x), ..., g.(x) be differentiable functions, and let f (x) be their prod-
uct: f(x) = g1(x) -+ ga(x). Prove that

Df(x) =73, g(x)-+ gi—1(x)Dgi(x)gi+1(x) - g (x).
i=1

Prove that (1 +x)"> 1+ nxif 1 + x> 0.

Let T be a set of positive integers such that
(i) Lisin T;
(i1) if all the predecessors of an integer n (i.e., all positive integers k with
k<n)arein T, thennisin 7.
Prove that T consists of all the positive integers.

(Second form of induction). Let S(n) be a family of statements, one for
each n > 1. Prove that if

(1) S(1) is true, and

(i1) if S(k) is true for all k < n, then S(n) is true,

then S(n) is true forall n > 1.

Use the second form of induction to give a new proof of Theorem 1.2:
Every integer n > 2 is either a prime or a product of primes. (Hint: The base
stepisn=2.)

BINOMIAL COEFFICIENTS

What is the pattern of the coefficients in the formulas for the powers (1 + x)" of
the binomial 1 + x? The first few such formulas are:

(I+x0)!'=1+Ilx
(I+x)2=1+2x+ 1x?
(I+x)P3=1+3x+3x2+ 1x°
(IT+x)*=1+4dx+6x2+4x3+ 1%

Figure 1.1, called Pascal’s triangle [after B. Pascal (1623-1662)], displays

the first few coefficients.

Figure 1.1
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Figure 1.2, a picture from China in the year 1303, shows that the pattern of
coefficients had been recognized long before Pascal.

Figure 1.2



