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The last ten to fifteen years have seen a resurgence of interest in control systems de-
signed to meet specifications for robustness and disturbance rejection. Robust stability
and robust performance tests, based on the structured singular value, have been devel-
oped. The robustness of the linear quadratic regulator and the linear quadratic Gaussian
controllers have been analyzed. Loop transfer recovery was developed as a means to
improve the robustness properties of the linear quadratic Gaussian controller. ¥, con-
trol was developed to provide a means of incorporating frequency-domain specifications
in control system designs. .. control also provides an ad koc means of incorporating
robustness specifications into control system designs. Finally, u-synthesis was devel-
oped as a powerful procedure for designing control systems that satisfy both robustness
and performance specifications.

This book is being written to accomplish a number of tasks. First and foremost, I
wish to make the new material on robustness, 7, control, and u-synthesis accessible to
both students and professionals. Second, I wish to combine these new results with pre-
vious work on optimal control to form a more complete picture of control system design
and analysis. Third, [ wish to incorporate recent results on robust stability and robust
performance analysis into the presentation of linear quadratic Gaussian optimal control.
Lastly, I wish to acquaint the reader with the CAD tools available for robust optimal
controller design.

Special Features

This book has been written to provide students and professionals with access to
relatively recent research results on robustness analysis, €. optimal control, and
p-synthesis. In addition, this material is integrated with linear quadratic Gaussian (7€)
optimal control results. The overall treatment is organized in a logical manner rather
than along the lines of historical development. A number of more specific features en-
hance the value of this book as a teaching text.

The results and derivations are simplified by treating special cases whenever this
can be done without compromising the clarity of results or methods. In addition, mathe-
matical developments that provide little insight into key derivations, results, and /or ap-
plications are relegated to the appendix. This approach allows the reader to develop a
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solid grounding in the basics before tackling the mathematical subtleties required to
derive the most general results. Practicing engineers can then augment their under-
standing using more advanced books and research papers, or use computer-aided de-
sign software to handle the more general cases. While this approach does simplify the
derivations, the mathematical level of this text is still quite challenging.

The solutions of both the ¥, (linear quadratic Guassian) control problem and the
€., control problem are based on a common variational approach. The variational ap-
proach adds more insight into the optimization process than completing the square.
Using a common variational approach in both of these problems also tends to demystify
the #€_, theory.

The use of computer-aided design (CAD) tools is integrated into the presentation
and problems. The CAD software employed is MATLAB® with the Control System Tool-
box and the u-Synthesis and Analysis Toolbox. Software is available via ftp for almost
every example in the text. For examples that are done analytically, software is included
for numerically checking the result. These software programs and their documentation
provide a significant learning resource (and also a significant reference source), since
virtually all optimal controller design and analysis is performed with the aid of CAD
software.

A general treatment of performance, including transient performance, tracking
performance, and disturbance rejection, is given up front along with a treatment of ro-
bustness. This organization provides a solid foundation in control system analysis. A
thorough performance and robustness analysis can then be performed on the control-
lers developed subsequently. This approach develops an understanding of what each
design does well and what each design does poorly, as opposed to simply showing that
a design is optimal.

Tracking and disturbance rejection are presented in the linear quadratic Gaussian
setting, as opposed to the linear quadratic regulator setting. Presenting this material in
the linear quadratic regulator setting leaves many students unsure of how to incorpo-
rate estimation within a tracking system design or within a design tailored for dis-
turbance rejection. The organization of this book solves this problem by treating the
idiosyncrasies involving estimation in these systems.

The book concludes with a case study that compares a design obtained via linear
quadratic Gaussian-loop transfer recovery with a design obtained via u-synthesis. The
insight gained through this comparison yields a better understanding of both design
methodologies, and provides guidelines on when to apply which design method.

Computer exercises are included for each chapter. These computer exercises de-
velop familiarity with current CAD software and allow the exploration of design options
and “what if” questions concerning the results. My students have frequently told me
that a significant part of their learning comes as a result of performing the computer
exercises.

A symbol list is included to help the reader with the notation. When writing this
text, I became painfully aware that the English language has only twenty-six letters,
and the Greek language has even fewer. While much effort has been made to keep
the notation simple and consistent, of necessity some symbols appear in multiple roles.
In general, I have rendered time-domain functions in lowercase. Laplace-domain and
Fourier-domain functions are rendered in uppercase. These practices are consistent
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with most introductory control texts and should be familiar to the reader. Matrices are
given in bold type, while both scalars and vectors are not bolded. Most introductory
books bold both vectors and matrices, but almost everything in this text is a vector, so [
have instead used bolding to highlight matrices, a practice I feel will better serve the
reader. There are some exceptions to these basic formatting rules in order to make the
results in this book match those appearing widely in the open literature. In these cases,
the notation used should be clearly delineated and not lead to confusion.

Supplemental material consists of a solutions manual available to instructors and
software used for the examples, which is available via ftp at ftp://ftp.aw.com/cseng/
authors/burl/loc/mfiles.

Prerequisites

Prerequisites include an introduction to control systems (classical control), probability,
state-space linear systems, and a working knowledge of linear algebra. In addition, an
introduction to random processes is desirable.

Classical control, probability, and some linear algebra are part of the undergraduate
education of most incoming engineering graduate students. An introduction to state-
space linear systems is typically accomplished (along with converting a linear algebra
background into working knowledge) by an introductory graduate course from a book
such as Chen or Kailath. This book begins with a review of the relevant state-space linear
systems material in a multivariable setting (Chapter 2). I usually only present the sec-
tions on singular value decomposition, principle gains, and internal stability, since this
material is new to most of my students. But I recommend that my students skim the
remainder of Chapter 2 as a review. I then ask them to inform me of any topics with
which they are not familiar, and I provide references, when necessary, to bring students
up to speed.

The book contains a terse but self-contained introduction to random processes
(Chapter 3). This chapter also contains many state-space random process results that
are not typically included in introductory random process courses. Therefore, I usually
cover this chapter thoroughly.

Organization

This book consists of three parts. The first part covers the analysis of control systems.
It contains a review of multivariable linear systems (Chapter 2), an introduction to vec-
tor random processes (Chapter 3), control system performance analysis (Chapter 4),
and robustness analysis (Chapter 5). The performance analysis chapter includes tran-
sient performance analysis, tracking system analysis, and disturbance rejection. Cost
functions are also presented as a means of quantifying performance analysis.

The robustness analysis chapter begins with a review of the Nyquist stability crite-
rion. The Nyquist plot is used to develop the gain margin, the phase margin, and the
downside gain margin. The stability robustness interpretation of these classical control
stability margins is clearly illustrated. The small-gain theorem is presented as a means
of determining stability robustness to unstructured perturbations. The structured sin-
gular value is then presented as a means of determining both stability and performance
robustness to more general structured perturbations.
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The second part of this book is devoted to €, (i.e., linear quadratic Gaussian)
optimal control. This part is divided into the linear quadratic regulator (Chapter 6),
Kalman filtering (Chapter 7), and linear quadratic Gaussian control (Chapter 8).

The chapter on the linear quadratic regulator (LQR) begins with a brief introduc-
tion to optimization using variational theory. The results are then used to derive the
LQR, both time-varying and steady-state. Application of the LQR is discussed along with
cost function selection. Performance and robustness of the steady-state LQR are evalu-
ated in some detail.

The chapter on Kalman filtering begins with an introduction to minimum mean
square estimation theory and the orthogonality principle. The Kalman filter, both time-
varying and steady-state, is then developed. Application of the Kalman filter is discussed
in some detail. Kalman filter performance and robustness are also discussed.

The chapter on linear quadratic Gaussian (LQG) control begins with the develop-
ment of the stochastic separation principle leading to the structure of the LQG control-
ler. Performance and robustness of the LQG control system are discussed. Loop transfer
recovery is presented as a means of increasing LQG robustness when needed. Tailoring
the LQG control system for tracking and disturbance rejection is also discussed in this
chapter.

The last part of this book is devoted to ¥, control. Chapter 9 begins with an intro-
duction to differential games. Differential game theory is used to derive the solution of
the suboptimal # . full information controller. The %, output estimator is then derived
using duality.

The %, output feedback controller is presented in Chapter 10. The application of
this controller to tracking systems, disturbance rejection, and robustness optimization
is discussed in detail. The 9-J{ iteration algorithm for u-synthesis is then presented. A
significant case study is presented as a means of contrasting the u-synthesis and the
LQG loop transfer recovery design methodologies.

The generation of reduced-order controllers is presented in the final chapter. This
chapter begins by showing that reduced-order controller approximation can often be
evaluated using a frequency-weighted co-norm. The general properties of a desirable
reduced-order approximation are then gleaned from a few examples. Pole-zero trunca-
tion and balance truncation are both presented as methods of generating reduced-order
controllers.

Usage

This book is recommended for use as a text in a two-semester sequence covering linear
optimal control. The entire book can be covered thoroughly in two semesters. A two-
quarter course can also be formed from this material if the students are well prepared.
The two-quarter course would also necessitate that the material be covered in less
depth.

A one-semester course that covers robust optimal control can also be based on the
material in this book. Such a course would be composed of a review of Chapter 2 fol-
lowed by a thorough treatment of Chapters 4, 5, 9, 10, and 11.

An additional one-semester course on linear quadratic Gaussian control can be
taught using this material. This course would be composed of a review of Chapter 2, a
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thorough treatment of Chapter 3, the cost function presentation in Chapter 4, the ma-
terial on unstructured perturbations and the small-gain theorem in Chapter 5, and a
thorough treatment of Chapters 6, 7, and 8.
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Unit step function
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Covariance function of the stationary random process x(t)
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Output matrix for the output y

Output matrix for constructed measurement

Set of complex m X n matrices

Set of complex n-dimensional vectors

Output disturbance

Input-to-output coupling matrix

Closed-loop system input-to-output coupling matrix
Controller input-to-output coupling matrix from r to u
Transfer function denominator
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xviii LIST OF SYMBOLS
Symbol Meaning
det(s) Determinant of a matrix
D,. Input-to-output coupling matrix from w to y
B, (s) Diagonal scaling matrix (left @-scaling matrix)
Dr(s) Diagonal scaling matrix (right @-scaling matrix)
A(s) Normalized general perturbation
A'(s) Unnormalized general perturbation
A,(s) Additive perturbation
A(s) Input feedback perturbation
A(s) Output feedback perturbation
Ag, Change in the closed-loop transfer function due to a perturbation
A (s) Input-multiplicative perturbation
v, S— ] Frequency-dependent perturbation bound
A,(s) Output multiplicative perturbation
A, Normalized perturbation augmented with performance block
A Specific perturbation
A Set of perturbations with a given block diagonal structure
A, Set of block diagonal perturbations (square blocks)
AJ(s, &) Increment of J
d, P-scale
8J(e, &) Variation of J
Sx Variation of x, differential of x
8 Kronecker delta function
8(t) Dirac delta (impulse) function
£ Small, positive constant
e(t) Tracking error, estimation error
e Integral of the tracking error
Ele Expectation operator
¢ Phase perturbation
D, to), P(t) State-transition matrix of a time-varying, time-invariant system
@, D7) Discrete-time state matrix
F, F(t, 7) Linear estimator weights
feoX. y) Joint density function
fasX | ) Conditional density function
Pivax Maximum-phase perturbation
P iin Minimum-phase perturbation
fbe ) Density function of the random process x(t)
g Uncertain gain
vy cw-norm performance bound
G(s) Laplace transfer function of a generic system or a plant
G(t) Kalman gain
glt) Impulse response matrix (generic system)
G.(5) Reduced-order controller transfer function
%(v) Linear system (possibly time-varying)
T T Discrete-time input matrix
Gol(s) Nominal plant transfer function
G, (f) State feedback gain for normalized measurement
G,,(s) Transfer function from input b to output a
G,(s) Closed-loop system transfer function
g.(s) Closed-loop system impulse response
GCa System with input w —y—2B/J,Px and output u + B/, Px
G/(s) Loop transfer function
GM+ Gain margin
Gm~ Downside gain margin
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Symbol Meaning

Gcian Maximum uncertain gain

G min Minimum uncertain gain

G.(s) Stable part of a transfer function

G,(s) Unstable part of a transfer function

¥ Hardy space

H(s) Perturbed closed-loop system

I Identity matrix

inf(e) Infimum

J Square root of —1, discrete index

J) Cost function, objective function

Js 2-norm cost function

Jal*, P) Augmented cost function, augmented objective function
4, Obijective function for suboptimal control

v Augmented objective function for suboptimal control
Jior LQR cost function

Jsp Stochastic regulator cost function

Jss Cost for suboptimal steady-state control

Jrv Cost for time-varying optimal control

k Discrete time index

K(s), K Controller transfer function, controller gain matrix
K, Feedforward control gain (tracking input)

K, Feedforward control gain (disturbance feedforward)
A Diagonal matrix containing eigenvalues

& Laplace transform

%, Space of signals with finite 2-norms

A Eigenvalue

5 X i Matrix dimensions

L. Controllability grammian

A% ith eigenvalue of a matrix

lim Limit

L, Observability grammian

mi(t) Measured output

max {*} Maximum operator

M, Element of the matrix M (row /, column /)

min{e} Minimum operator

m,(t) Mean of the random process x(t)

My Conditional mean

m(t) Kalman innovations process

nal®) Structured singular value

N Observability matrix

n Discrete-time index, matrix dimension

N, Number of encirclements of the point minus one by the Nyquist locus
N, Number of right half-plane poles of {1 + G(s)K(s) }
N, Square version of a matrix

N(s) Nominal closed-loop transfer function (standard form)
num(s) Transfer function numerator

n, Dimension of the vector v

N, Number of right half-plane zeros of {1 + G(s)K(s)}
P(s) Plant transfer function in standard form

P(t), P Riccati solution (LQR, #.. full information control)
p, p(t) Lagrange multiplier

pi(t) Pulse function

Poles of a system
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Symbol Meaning

PM Phase margin

9 Controllability matrix

[ Angle, phase

Q(¢) State weighting function

Q; Combined state and control weighting matrix

R Factor in Cholsky decomposition of controllability grammian
R Rank

p Measurement weighting coefficient (output LTR)

R(t) Control weighting function

r(t) Reference input

Pl Spectral radius

rank(*) Rank of a matrix

Ric(s) Ricci operator

R, (1) Correlation function of the stationary random process x(t)
R.(t), £5) Correlation function of the random process x(t)

R (n) Discrete-time correlation function of the random sequence w(k)
Pmxo Set of real m X n matrices

R Set of real n-dimensional vectors

S Matrix of singular values

S Laplace variable

o Singular value

o Maximum singular value

o Minimum singular value

sup(*) Supremum

S, (w) Spectral density of the random process w(t)

() Correlation matrix of the random process x(t)

S Cross-correlation matrix

3, (n) Discrete-time correlation matrix of the random sequence w(k)
T Sampling time (for discrete-time systems)

t Time

T Time variable; time difference in correlation function

T T(t) Transformation matrix for change of basis

to Initial time

T, T2 Components of matrix fraction decomposition

T, Correlation time

tr Final time

tr(e) Trace operator

Ts Settling time

U Matrix of left singular vectors

u(t) Control input; generic system input

U, Normalized control input

0, Upper bound on the ith element of the control

A" Matrix of right singular vectors

v Generic vector, measurement error, measurement noise
v(t) Measurement noise

Vi White shaping filter input, normalized measurement input
Vs Noise on constructed measurement

Vi kth element of the vector v

v’ Transpose of the vector v

vt Conjugate transpose of v

Q (sI—=A;)"!

w Weighted matrix

® Frequency
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Symbol Meaning

Wi(t) Weighted function

w(t) Disturbance input

Wo Constant disturbance input

Wi (6) Output weighted function

W White shaping filter input, normalized plant input
Wi Fictitious noise for LTR

W, (t) Input-weighted function

X Estimate of x

X Estimate of x given data through x — ¢

X(s) Laplace transform of x(t)

x(t) State

X* Extremal of x

Xo Initial state

X Desired state

X Desired state (tracking systems)

X Final state

X(t) State after change of basis or coordinate translation, adjoint state
Z.(t) Covariance matrix of the random process x(t)
By Cross-covariance matrix

w Eigenvector matrix

Y(¢) Reference output weighting function

ylt) Reference output; generic system output

Y Normalized reference output

Yuw Reference output due to w

Yy Hamiltonian matrix (Kalman filter)

Y., Hamiltonian matrix (#.. estimation)

e Damping ratio

Z(t) Output error weighting function

z(t) Constructed measurement (nonwhite measurement noise)
Z(t) Coordinate translation of the state

z(t) Transformed state

Z; Zeros of a system

% Hamiltonian matrix (LQR)

% Hamiltonian matrix (full information control)
la, b) Real interval, closed at a and open at b

o Infinity

[I*]I> 2-norm (vector, signal, or system)

I+l Euclidean vector norm, generic norm
[*ll2.1e0.60 Finite-time signal 2-norm

[+l 0.0 Finite-time signal e>-norm

I/l Vector Euclidian norm

I*llwie Weighted signal 2-norm

I*]lw Weighted vector 2-norm

[I]l-- %-norm (vector, signal, or system)

2 {} Argument of a complex number

® Convolution operator

€ Element of a set

Magnitude of a complex number
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