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FOREWORD

Group theory, which in contemporary science has become a powerful tool for calculus, dates
from the middle of the 19th century. The basic notions of group theory were clearly stated by
Evariste Galois in connection with the solution of algebraic equations in radicals (1832). Somewhat
later, in his fundamental work Treatise on Permutations, Camille Jordan not only developed the ideas
of Galois, but indicated many other applications of group theory and obtained significant results in
the theory itself (1870).

At first the groups studied were finite and discrete. The notion of the continuous group was
introduced by Sophus Lie, a pupil of Jordan’s, who tried to apply the methods of Galois to the problem
of integrating differential equations in quadrature (1891). Lie understood continuous groups as
transformation groups expressed by means of analytic (or infinitely differentiable) functions. Later
such groups were called Lie groups, while the term continuous group has remained, but is now used
for abstract groups.

Neither Sophus Lie nor his followers found any constructive methods for integrating differential
equations in quadrature, and for a long time the theory was developed to solve purely algebraic
problems, regardless of the objective that had initiated its appearance.

The first, and extremely illustrative, applications of Lie group theory pertained to relativistic
mechanics (1905) and quantum mechanics (1924).

The group-theoretic analysis of the foundations of relativistic mechanics, carried out by Henri
Poincaré, was a brilliant instance of the implementation of Felix Klein’s Erlangen program (1872): a
meaningful physical theory should be expressed only in terms of invariants of the appropriate group.
Poincaré, having postulated that Lorentz transformations provide the connection between different
inertial systems, established the group-theoretic character of these transformations, computed the
invariants of this group and, using these invariants, found the law of motion of a relativistic particle
(the analogue of Newton’s second law).

It is also to Poincaré that we owe the first application of group-theoretic ideas to analytic
mechanics. He found the generalization of the Lagrange equations by using the operator basis for
the transitive group acting on the configuration space of the system (1901).

A special role in mechanics and physics is played by the group SO(3) of orientation-preserving
orthogonal transformations, which is a subgroup of the Galilean group and, in addition, the configu-
ration manifold of a rigid body in space with one fixed point. The parametrization of the kinematics
of rotations, performed by Hamilton and Klein, based on group variables, allowed this parametriza-
tion to be simplified considerably as compared with the parametrization proposed by Euler in 1776.
Thus, unlike the Euler equations, the kinematic equations of Poisson are linear. The new kinematics
of rigid bodies later found successful applications in the navigation of moving objects.

It is interesting to note that Hamilton, when he “discovered” quaternions in 1843, immediately
found applications for them to the kinematics of rigid bodies, long before the notions of the
continuous group and of the covering spaces of groups appeared. This shows that not only do
group-theoretic ideas serve as the basis for constructing realistic models in mechanics and physics,
but the converse is also true: the construction of these models exhibits such a basis.

It is no accident that solutions of autonomous differential equations form a group, whereas
those of nonautonomous ones do not. The presence of time on the right-hand side in explicit form
indicates that the idealization involved in this model is quite crude. Another example in this field is
the equivalence, discovered by J. J. Moreau in 1959, between the dynamics of an ideal liquid in a
cavity and the dynamics of an infinite-dimensional rigid body.
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It is easy to see that the applications of group theory to mechanics and physics described above
were used to create models, derive differential equations, and analyze their properties, and so go far
beyond Sophus Lie’s narrower goal—integration of differential equations in quadrature. Actually,
Lie himself undertook the group-theoretic analysis of partial differential equations (he found the
symmetry group of the heat equation), although in such equations the presence of symmetries does
not mean that the order of equations can be lowered. However, Lie apparently did not notice that
the group invariance of partial differential equations makes it possible to decrease the number of
independent variables, to construct particular solutions, and to classify boundary conditions.

In 1950, George Birkhoff pointed out the usefulness of group-theoretic analysis for the equations
of hydrodynamics. These ideas were widely developed in the work of L. Ovsiannikov and his pupils.

As to the original goal (the integration of differential equations in quadrature), the first results
after Lie were obtained with a certain delay. In 1918, Emmy Noether established the connection
between the symmetries of Hamiltonian actions and the first integrals of the corresponding Lagrange
equations.

Later on, many authors derived integrability (or the decrease of order) of Hamiltonian systems
from the existence of symmetries for the Hamilton equations.

There are only two or three examples of completely integrable systems possessing solvable
symmetry groups of the appropriate order, and they are all classical problems whose solutions by
other methods were known long before group-theoretic methods appeared.

The only constructive applications of this theory were given by groups of linear transformations,
whose existence as symmetries is usually easy to observe, and this makes it possible to lower the
order of the system. However, on the one hand, this only requires a small part of the theory and, on
the other, it is completely covered by dimensional and similarity considerations.

Here we should note that the problem of exact integration of differential equations, which was
regarded as the main problem in the 19th century, is no longer considered so important today.
Often the decrease of order by the use of first integrals spoils the system so much that, if complete
integrability is not achieved, the procedure is useless. Sometimes it is advantageous to raise the
order, whenever this improves the analytical properties of the system, making it more convenient
for investigation, e.g., by using a computer.

Not so long ago a new domain of application of group-theoretic methods, in which they turned
out to be extremely efficient, arose. This is the formalization of various procedures for finding
approximate solutions of differential equations. Well-known asymptotic methods, e.g., the Krylov—
Bogolyubov method, Poincaré’s method of normal forms, the multiscale method, and others, widely
used in celestial mechanics and in the theory of oscillations, have a significant drawback: as the
number of approximation steps grows, the amount of computations increases catastrophically, so
that the feasibility of high-order approximations lags behind the demand for them.

Still, the procedures involved in such calculations consist of various operations, and if one can
discern an algebraic structure in the set of operations, or organize them so that they obey such a
structure, then the existing algorithms can be significantly simplified.

Thus the following main domains of application of group-theoretic methods in contemporary
science have emerged:

® Methods of exact integration of differential equations.

e Construction of paradigms, or models, possessing some group action.

® Various methods of qualitative analysis involving ideas of group theory in one way or the
other.

® Group-theoretic formalizations of approximate solution methods for integrating differential
equations.

We have listed these domains roughly in the same order as the appearance of their main results.
Here, when we speak of the applied character of various results, we should clarify what is
meant by “applied.” Thus, if as our starting point we take, say, the theory of continuous groups
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as presented by Pontryagin, then the group-theoretic analysis of differential equations as described
by Ovsiannikov or Olver is an applied field. Nevertheless, its fundamental role in the theory of
differential equations itself is indisputable.

It seems natural to call “applied” any result obtained by group-theoretic analysis if it pertains to
a field that lies outside group theory or differential equations (e.g., mechanics or physics).

What are the goals of the present book, how does it differ from other monographs on group-
theoretic methods in differential equations and their applications to physics?

First of all, it is obvious that the dominating topics in the literature devoted to applications of
groups to physics are quantum mechanics, crystallography, and nuclear physics. The authors of the
present monograph would like to shift the emphasis towards mechanics and applied mathematics:
classical mechanics, relativistic mechanics, theory of oscillations, perturbation theory, and concrete
problems of a purely mechanical type, e.g., problems involving dry friction and the like.

Nevertheless, in this connection we hardly touch on continuum mechanics, since this topic is
presented in the literature nearly as fully as quantum mechanics or crystallography.

Secondly, the authors intend to present constructive methods only, i.e., only those where there is
no place for statements of the type “if something or other exists, then this or that can be found,” or if
such a statement appears, then it is immediately followed by an explicit description of the premise.

The contents of the book may be roughly divided into three parts. The first is an introduction
to Lie groups sufficient for understanding the specific features of the application of group-theoretic
ideas in contemporary mechanics and applied mathematics.

The second part contains a large variety of mechanics problems to which group-theoretic
methods can be successfully applied. This includes the analysis of the foundations of classical
and relativistic mechanics, perturbation theory for configuration spaces of resonance systems, the
kinematics of rigid bodies, elements of Hamiltonian mechanics, several examples of the integration
of the equations of motion with the help of symmetry groups.

In the third part we present a group-theoretic formalization of asymptotic methods of applied
mathematics and illustrate it by its application to problems of oscillation theory.

The book is intended for research scientists, engineers, and graduate and undergraduate students
specializing in applied mathematics, mechanics and physics. Individual chapters may be used as the
basis for specialized graduate courses in universities and colleges.

The only prerequisites are the standard introductory courses in advanced calculus and in differ-
ential equations.

We would like to express our deep gratitude to Alexei Zhurov who translated this book into
English and made a lot of useful comments. We also appreciate the help of Alexei Sossinsky who
translated the Foreword.

Dmitry M. Klimov
Victor Ph. Zhuravlev



AUTHORS

Dmitry M. Klimov, Professor, D.Sc., Ph.D., is a noted scientist in the fields of mechanics and
applied mathematics. Dmitry Klimov graduated from the Department of Mechanics and Mathemat-
ics of the Moscow State University in 1950. He received his Ph.D. degree in 1960 and D.Sc. degree
in 1965 at the Moscow State University. Since 1967, Dmitry Klimov has been a member of the staff
of the Institute for Problems in Mechanics of the Russian Academy of Sciences. In 1989 he was
elected Director of the Institute for Problems in Mechanics.

Professor Klimov is a Full Member of the Russian Academy of Sciences. He is the Head of the
Department of Mechanics and Control Processes of the Russian Academy of Sciences and the Head
of the Department of Mechanics of Controlled and Gyroscopic Systems at the Moscow Institute of
Physics and Technology. He is also the Deputy Editor of the journal Mechanics of Solids.

Professor Klimov is an author of five books and more than 100 research papers. He has made
important contributions to the fields of navigation systems and gyroscopes, nonlinear oscillations,
asymptotic methods, and rheology. For his research in mechanics, Professor Klimov was awarded
a U.S.S.R. State Prize in 1976 and a Russian State Prize in 1994.

Victor Ph. Zhuravlev, Professor, D.Sc., Ph.D., is a noted scientist in mechanics and applied
mathematics. After having received his first M.S. degree in Mechanics of Gyroscopes at the Bauman
Moscow Higher Technical School in 1966, Victor Zhuravlev entered Moscow State University, where
he received his second M.S. degree in Differential Equations in 1970.

Since 1970, Victor Zhuravlev has been working at the Institute for Problems in Mechanics,
Russian Academy of Sciences, where he received his Ph.D. degree in 1973 and D.Sc. degree in
1978. For over ten years, he has been an Associated Professor with the Moscow Institute of Physics
and Technology and is now Head of the Institute’s Chair of Mechanics.

Professor Zhuravlev’s basic scientific results are in the theory of gyroscopes, analytical mechan-
ics, and application of Lie groups in perturbation theory.

Since 1994, Professor Zhuravlev has been an Associate Member of the Russian Academy of
Sciences. He is a member of the Editorial Board of the journals Mechanics of Solids and Applied
Mathematics and Mechanics. In 1994, he was awarded a State Prize for his contribution to mechanics.

Professor Zhuravlev is an author of over 150 scientific publications, four monographs, and a
textbook ‘“Fundamentals of Theoretical Mechanics.”



CONTENTS

FOFEWOTT ;v msimis 5amimes oo mme s 5w 5 8 008 w8 08 5 W08 504 0608 0 8 0N 6600 5 00 0 8 6 i vii
AULHOTS vy wiswsmamsmsmsms ampwnempwer s ps RO RIREGE PG 0o 0 HiHsHiusmiusEsgiEs X
1. Basic Notionsof Lie Group Theory ................ ... . ... ... ... .......... 1
L:1: INOHON OF GIOUD «cis5ms a5 64 o ao6s 556 GEss S0 85 85555 b f Bodhsbs e s iamamnmems 1
1.2. LieGroup. Examples .............. ittt 3
1.3.  Group Generator. Lie Algebra ...............o it 5
1.4. One-Parameter Groups. Uniqueness Theorem ................................ 11
1.5. Liouville Equation. Invariants. Eigenfunctions ................................ 13
1.6. Linear Partial Differential Equations ................... ... ... iiiiiiii... 17
1.7.  Change of Variables. Canonical Coordinatesof aGroup ........................ 18
1.8. Hausdorff’s Formula. Symmetry Groups ..........................c..oou... 20
1.9. Principle of Superposition of Solutions and Separation of Motions in Nonlinear
Mechanics . .. .. ...t 29
1.10. Prolongation of Groups. Differential and Integral Invariants ..................... 31
1.11. Equations Admitting a Given Group .................uuiiriirurrnnnnnnnnnns 36
1.12. Symmetries of Partial Differential Equations ................................. 42
2. Group Analysis of Foundations of Classical and Relativistic Mechanics ........... 47
2.1. Axiomatization Problem of Mechanics ............ ... ... ... ... ... .. ... 47
2.2. Postulates of Classical Mechanics . ...................c.ouuiiiiiinnnnnnnnn.. 48
2.3. Projective Symmetries of Newton’s FirstLaw ................................. 50
2.4. Newton’s Second Law. Galilean Symmetries ................................. 51
2.5. Postulates of Relativistic Mechanics ....................coiiiiiiiueneenoi... 54
2.6. Group of Symmetries of Maxwell’s Equations ................................ 54
2.7. Twice Prolonged Lorentz Group . ..............cooiuuiiieiinininnnnnennnnn. 56
2.8. Differential and Integral Invariants of the Lorentz Group ........................ 60
2.9. Relativistic Equations of Motion of a Particle ................................. 62
2.10. Noninertial Reference Frames ............... .. ... ... ... .. oo, 63
3. Application of Group Methods to Problems of Mechanics ....................... 65
3.1.  Perturbation Theory for Configuration Manifolds of Resonant Systems ............. 65
3.1.1. Statementof the Problem ............ ... .. ... .. ... . . i, 65
3.1.2. The Case of Double Natural Frequency .......................ccovu... 66
3.1.3. The Manifold of Degenerate Forms. Local Evolution Basis ................ 67
3.1.4. Algebraof Local Evolutions .....................c.oiiuuininnnn... 69
3.1.5. Classification of Perturbations .........................ccoouivirn. ... 70
3.1.6. The Problem of Stabilization of the Oscillation Shape .................... 71

3.2. Poincaré’s Equation on Lie Algebras .....................oouiiieniii... 73



vi CONTENTS
3.3. KinematicsofaRigidBody ........... ... . .o 76
3.3.1. Ways of Specifying the Orientationof aRigidBody . ..................... 76
3.3.2. Addition of Rotations . . ............uiiuniiiiiniiii i 90
3.3.3. Topology of the Manifold of Rotations of a Rigid Body (Topology of
the SO(3) groUP) . . o .o vttt e 96
3.3.4. Angular Velocityof aRigidBody ........... ... ... ... ... ... ... 97
3.4. Problems of Mechanics Admitting Similarity Groups .. ..............coivvn.... 104
3:4.). SuslovProblemM .u:sswiosmsvimsmmsmemsnsmsmswinsssisiasmauimieianss 104
3.4.2. The Problem of the Follower Trajectory ................ccovueviinnn... 107
3.4.3. Rolling of a Homogeneous Ball Overa RoughPlane ..................... 109
3.5. Problems With Determinable Linear Groups of Symmetries ..................... 112
3.5.1. Falling of a Heavy Homogeneous Thread .............................. 112
3.5.2. Motion of a Point Particle Under the Action of a Follower Force ............ 115
3.5.3. The Problem of an Optimal Shape of a Body in an AirFlow ............... 120
4. Finite-Dimensional Hamiltonian Systems . .................................... 125
4.1. Legendre Transformation ........... ... ... ... ... i i, 125
4.2. Hamiltonian Systems. Poisson Bracket .............. ... ... ... . ... ... 126
4.3. Nonautonomous Hamiltonian Systems ....................c..coiiiiieiiunnn... 128
4.4. Integrals of Hamiltonian Groups. Noether’s Theorem .......................... 129
4.5. Conservation Laws and Symmetries ..................0. i 132
4.6. Integral Invariants ... .............uuiiiuuninen it 133
4.6.1. Poincaré—CartanInvariants .....................iiiiiiiiniinanonn. 134
4.6.2. Liouville’s Theorem of the Phase Volume .............................. 138
4.7. Canonical Transformations .................oouiiiiiriinrnennnnnn. 139
4.8. Hamilton-Jacobi Equation .......... ... ... .. ... . ... 145
4.9. Liouville’s Theorem of Integrable Systems . .................................. 147
4.10. The Angle-Action Variables .................. ... ... ... ... .. ... .. 148
5. Asymptotic Methods of Applied Mathematics ................................. 151
5.1, Imtroduction ............... i 151
5.2. Normal Coordinates of Conservative SyStems . ... ................oouuueeenn... 153
5.3. Single-Frequency Method of Averaging Based on Hausdorff’s Formula ............ 158
5.4. Poincaré Normal Form ............ ... ... . . . i 160
5.5. The Averaging Principle . . ...........o i 170
5.5.1. Averaging of Single-Frequency Systems . .............................. 175
5.5.2. Multifrequency Systems. Resonance ....................c.cuuueeeeo.... 183
5.6. Asymptotic Integration of Hamiltonian Systems ............................... 189
5.6.1. Birkhoff Normal Form .............. ... ... .. ... ... ... ........... 189
5.6.2. Averaging of Hamiltonian Systems in Terms of Lie Series ................. 200
5.6.3. Artificial Hamiltonization ..................... ... ... .. ..., 201
5.7.  Method of Tangent ApproxXimations .. ...................ouiiuunuuenennnnnn. 204
5.8. Classical Examples of Oscillation Theory .................oouvmuiuuneneinn.. 208
5.8.1. VanDerPol'sEquation ..................c.oiiiiniiniininiaannno... 208
5.8.2. Mathiew's EQUation .................c..iiuiuiiiinin i, 209
5.8.3. Forced Oscillations of Duffing’s Oscillator ............................. 212
5.8.4. Forced Oscillations of Van Der Pol’s Oscillator ......................... 215
Brief Historical Sketch . ............. ... ... .. ... ... .. . .. .., 219



Chapter 1
Basic Notions of Lie Group Theory

1.1. Notion of Group

Let the symbol G denote a set of elements of arbitrary nature (e.g., a set of numbers, functions, or
some objects of geometric nature, etc.).
The set G is said to be a group if:

(1) An operation is defined over the set G which assigns a unique element C' € G to any two
elements A € G and B € G taken in a certain order. This operation is called multiplication
(or composition) and written symbolically as

AoB=C.
In general, this operation is noncommutative, i.e., A o B # B o A, which defines the order

of taking the elements in the product.

(2) There exists an element E € G such that
AoE=FEoA=A

forany A € G. This element is called the identity element or unit of the group.

(3) Forany A € G there exists an element A~! such that
AocAl'=A"0A=E.

This element is called the inverse of A.

(4) The associativity of multiplication holds, i.e.,
Ao(Bo(C)=(AoB)o(C

forany A, B, and C of G.

The above four conditions define the notion of an abstract group, i.e., a group in which the nature of
its constituent elements is of no importance.

Condition (1) is referred to as the condition of closure of the set G under the operation o thus
defined on this set.

If there exists a subset H C G closed under the same operation, then such a subset is called a
subgroup.

If the operation introduced in the group G is commutative, i.e., A o B = B o A for any elements
A and B of G, then the group is called commutative, or abelian.
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Let us demonstrate that in any group the unit is unique. We proceed by reductio ad absurdum.
Suppose there exists an E; # E such that

AOE] =E10A=A.
Multiply this equation by A~!. We have
AloAoE =A"0A4 and EjoAoA'=Ao0A™"

Whence, with reference to conditions (3) and (4), we have E| = E.
The uniqueness of the inverse elements can be proved in much the same simple manner.

Exercise. Show that in the definition of group it suffices to require the existence of a right unit
and a right inverse, i.e., Ao E = A and A o A™! = E, since this will imply the existence of a left unit
and its identity with the right unit, as well as the existence of a left inverse and its identity with the
right one.

Examples of groups.

1. The set of all real numbers. The group operation is addition. The role of the unit is played
by zero, and the inverse of an element is the negative of the element. The set of all rational numbers
is a subgroup. Other subgroups include the set of all integers and the set of all even numbers. The
set of all odd numbers is not a subgroup.

2. The set of reals is a group under the operation of arithmetical multiplication, provided that
the number zero is excluded.

3. Any finite number of elements with the operation defined by the Cayley table (an example
of 5 elements is given):

|

BHOQW ™ |o

For example, C o D = B. The role of the unit is played by E.

4. The set of points lying on a circle. The operation is defined as follows. Let the position of a
point A relative to some reference point be defined by the angle ¢ 4 and let the position of a point B
be defined by the angle ¢ . To the points A and B the operation assigns the point C' whose position
is defined by the angle pc = 94 + ¥B.

5. The set of n X n matrices with determinants other than zero. The group operation is matrix
multiplication.

Below are some examples of sets which are not groups under the operations introduced over
them.

1. The set of integers with multiplication operation. Although the product of two integers is an
integer and there exists a unit, none element has its inverse, except for the number one.

2. The set of vectors in the three-dimensional space with the operation of outer product. Except
for the first condition in the definition of a group, no other conditions are satisfied.

The groups in examples 1 through 4 are commutative, or abelian, groups. Example 5 presents a
noncommutative group.
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1.2. Lie Group. Examples

One may easily see that in examples 1, 2, 4, and 5 (see Section 1.1) it is possible to introduce,
independently of the group axioms, a notion of closeness between any two elements for the corre-
sponding sets of elements. By virtue of this, the group operations turn out to be continuous functions,
which makes it possible to treat such groups in two aspects, from the viewpoint of algebra and from
the viewpoint of analysis.

This unification turns out to be quite fruitful. This is what the theory of Lie groups utilizes
rather essentially.

Presently, by the term “Lie group” a wider object is understood compared with that introduced
by Lie himself. In what follows, we consider this wider object.

By G we mean a set of transformations of an n-dimension real arithmetic space into itself,

¢ =Q(ga) (g€R),

on which an operation satisfying the group axioms is defined. The set of transformations is numbered
by a parameter a. If a is real, then the set of transformations is said to be one-parameter. If a is
a k-vector, a € R¥, the set of transformations is k-parameter. In this case, all ay, ..., a; must be
essential, that is, irreducible to fewer parameters by a transformation of the parameters.

The operation introduced over the set G is the composition of two transformations. For example,
suppose the transformation ¢ — ¢’ with a fixed value of a is followed by a transformation ¢’ — ¢"
with a different value of a, denoted b:

q" =Q(d',b).

If the composition

7" =Q(Q(g,a),b)

defining the transformation ¢ — ¢" is a transformation from the same set (corresponding to some
other value c of the parameter), i.e.,

7" = Q(Q(g,a),b) = Q(g, ),

then this means that an operation is defined on the set of transformations in question (the composition
of two transformations from the set does not go beyond the limits of the set).

The transformations are usually assumed to be defined on some open set from R™ and in a
sufficiently small neighborhood of the point a. This assumption is made to avoid discussions about
the domain of definition of the functions ¢’ = Q(g, a) in both the variable g and the parameter a.

Thereby the function ¢’ = Q(g, a) determines a local family of local transformations.

DEFINITION. A set of transformations q' = Q(q, a) is called a local Lie group of transformations
(from now on, a Lie group) if:

(1) the composition of any two transformations from this set is again a transformation from the
same set (i.e., the set of transformations is closed with respect to the composition);

(2) the identity transformation, which plays the role of the group unit, belongs to the set of
transformations in question;

(3) for any transformation from the set there exists its inverse, which belongs to the same set,
so that the composition of the two transformations yields the identity transformation;

(4) the function q' = Q(q, a) is analytic in q and a in some open set of variation of q and in
some neighborhood of the unit element, e, for the variable a.

Note that the requirement that the operation be associative, which is used in the abstract definition
of a group, is unnecessary here, since the composition of transformations obviously satisfies this
property.
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Group operations. The composition of the transformations ¢’ = Q(g,a) and ¢" = Q(¢’,b)
determines the transformation ¢’ = Q(q, c) in which the parameter c is related to a and b by

c=+(a,b).

It is this function, analytic in a neighborhood of the unit (@ = e and b = e), which represents an
expression for the group operation.

By using the notion of group operation, one can rewrite the definition of a Lie group more
concisely as follows.

A set of transformations ¢ — ¢’ : ¢’ = Q(q, a) is called a Lie group if:
(1) Q(Q(g.a),b) =Q(g,7(g,0)) Va,b;

) Jda=e: Vb ~(eb)=-(be)=0b;

3) Va 3Fb=a': y@al)=v@"',a)=e; and

(4) all the functions involved in the definition are analytic.

Most important examples of Lie groups.
1. Group of translations: q' = g + a. Here the dimensionality of the parameter a is the same as
that of the variable gq.

2. Group of extensions: q' = a;q; (1 = 1,...,n). If all a; = a, where a is a scalar quantity, then
this group is called a similarity group.
3. Group of orthogonal transformations: q, = Z;Ll a;jq; 0 =1,...,n), where A = {a;;} is

an orthogonal matrix, AT = A~!. This group is conventionally denoted O(n). The most important
subgroup of this group is the subset of transformations with det A = 1 (in general, det A = +1). Itis
conventional to denote this subgroup by SO(n) and call it a group of rotations.

4. Group of linear transformations: g, = z;’zl a;jq; (i=1,...,n) with det A # 0. This group
is designated as GL(n), which stands for a general linear group in R™. If we require additionally
that det A = 1, then we obtain a volume-preserving subgroup of transformations. This subgroup is
called a special linear group, or a unimodular group, and denoted by SL(n).

5. Group of motions: ¢' = a + Aq, where Aq stands for Z;.l:l aijq; (1 =1,...,n) for brevity,
and A is an orthogonal matrix with det A = 1. In particular, this group contains subgroups such as
the group of translations and the group of rotations.

6. Affine group: q' = a+ Aq, where det A # 0. The group of motions is a subgroup of the affine
group.

7. Projective group:

g= 251 @i +bi
* Z?:l a;q; + b

In the matrix under the determinant sign, the matrix A = {a;;} is extended by a column of b; and a
row of a;, with the last diagonal entry being b.
8. Volume-preserving group of transformations:

det{gqi}sl Gj=1,...,n).

4q;

7 Aij bi L.
with det(aj b);tO ,j3=1,...,n).

Below are two groups which are of particular importance in mechanics and physics.
9. Galilean group:

t'=t+ty, ' =r+ro+uvt+Ar (AT=A,

where notation customary in mechanics is used. The Galilean group involves ten parameters: ¢,
three components of the translation vector o of the origin, three components of the velocity v, and
three independent parameters of the rotation matrix A.
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10. Lorentz group:
o= t—vzx e r-vt
V1?2’ V1i-v?’
where the z-axis of the fixed reference frame is directed along the velocity v at which the origin of
the primed reference frame moves.

Let us find the group operation of the Lorentz group. We have

Y= t—-uz o = z-vit
Vi-vf’ Vi-o}’
s t'—vx’ _ t— (v +v)z /(1 +v1v2)
VI-v3 /1= +v)/A +vv)P
w_ T =vt"  z—(v+u)t/(1+v1))

V1= /1[0 +v)/( + v
Thus the group operation has the form

vn = v+ U2
i S r———
1+U|'U2

It represents the law of addition of velocities in relativistic mechanics.

1.3. Group Generator. Lie Algebra

Let the group parameter a be scalar. We transform the parameter in accordance with the formula
a — p: a = e+ p. Then the value p = 0 corresponds to the identity transformation, i.e., the unit of
the group.

Let p be the parameter occurring in the equation of the group, ¢’ = Q(q, ). Expand this
expression in a series in powers of 1 about the point y = 0:

g =q+pm(g+---.

The linear part of the group represented by the first two terms of this expansion is called the germ
of the group. Let a scalar function F(q) be specified in the space of the variables q. The group
transformation ¢ — ¢’ takes the function F'(q) to the form

dF
F(g) = F(¢)=F(q+pn(@)+---) = F(q) +un(q)E ooy,
The part of the increment of F'(¢') linear in p is given by
dF z oF
AF(G) = — = i(Q)=— =uUPF,
(@) = un(g) - ; ni(q) 0 wU
where U is a linear differential operator of first order,

0 0
U= IR 7 Sy
N1(q) o + n(q) Ba,

This operator is referred to as the infinitesimal generator of the group, also called the generator or
operator of the group.



6 BASIC NOTIONS OF LIE GROUP THEORY

If the group is multiparameter, then the above procedure can be carried out with respect to each
of the parameters. Thus, a multiparameter group has as many infinitesimal generators as the number
of independent parameters.

Below we present expressions of the infinitesimal generators corresponding to the Lie groups
listed in the above examples.

1. Group of translations:

Ui = 6?11' @G=1,...,n)
2. Group of extensions:
Ui=Qi—a% @G=1,...,n)

0 1o}
U=q—+ +qn— (similarity group).
q1 3 qn 9gm Yy group
3. Group of rotations. Consider a small neighborhood of the identity matrix E in the set of

orthogonal matrices:
A=FE+uN,

where 4 is a small scalar parameter. Neglecting the terms of the second order of smallness, we find
from the condition of orthogonality of the matrix A,

(E+pN)'(E+upN)=E,

that NT = —N. Thus, a small variation of an orthogonal matrix is a skew-symmetric matrix which
is what determines %n(n — 1) independent parameters of an orthogonal group: p;; = un;;, where
{ni;} = N and n;; = -n;;. The germ of an orthogonal group has the form

n
g =qi+ ijq]';
j=1

to each parameter p;; there corresponds the generator

9] 0
Ui =¢i— -+ i >j7=1,...,n).
ij = 4j 94; q; 3qj (> )
4. Group of linear transformations. The variation of the nondegenerate matrix A in a neigh-
borhood of the identity matrix is given by A = E + M, where M = {u;;} is a matrix with small
independent entries p;;. The number of independent generators is equal to n?. These are

0 .
Uij:qja_qT (z,]=1...,n).

5. The generators of the group of motions involve the generators of the translation group and
those of the rotation group.

6. The generators of the affine group involve the generators of the groups of translations and
linear transformations.

7. Projective group. Introduce notation for the parameters y so that they vanish for the identity
transformation:

{aij} = E+{p;}, bi=pi, aj=p;, b=l+p,  (@Gj=1,...,n).



