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Preface

Continuing the tradition of algebra conferences hosted by Ohio University, the
summer of 2007 saw the addition of yet another chapter - an international conference
on rings and modules. The conference, attended by over seventy mathematicians
of international repute from more than twenty countries, provided an excellent
opportunity for the experts in Theory of Rings and Modules and other related topics
to exchange ideas and discuss new developments in these rapidly growing areas of
research. The conference also stimulated new exciting collaborations among the
participants.

The conference, named International Conference on Rings and Things, is a
reference to Carl Faith’s well-known book Rings and Things. The conference was
hosted by the Zanesville campus of Ohio University and was held in honor of Carl
Faith’s 80th birthday and Barbara Osofsky’s 70th birthday. It was a pleasure to host
the conference and then present these Proceedings dedicated to such outstanding
algebraists. Their work through the years speaks for itself and is certainly of the
highest quality.

This volume represents some of the recent work of the invited speakers and
other participants of the conference. It is our hope that the articles presented in
this volume will be an important source of inspiration for the researchers interested
in Theory of Rings and Modules, Representation Theory and applications.

We would like to thank all of the mathematicians who participated by either
attending or presenting their work and generating new ideas for further research.
We would especially like to thank those who graciously accepted our invitations
and those who submitted their work for publication in these proceedings.

We would like to thank the National Security Agency, the Deans of the Chill-
icothe, Lancaster and Zanesville Campuses of Ohio University for their financial
support. Thanks are also due to the Vice President for Regional Higher Educa-
tion and the Office of Research at Ohio University for their continued support of
scholarly activities at Ohio University and its regional campuses.

Of great assistance and inspiration for this conference and subsequent proceed-
ings is the Center for Ring Theory and its Applications (CRA) at Ohio University.
CRA has been a driving force that keeps the State of Ohio on the forefront of
research in Algebra. The Director of CRA, S.K. Jain, not only offered financial
support but also gave many helpful suggestions in the organization of the confer-
ence.

On a personal and professional level we would like to thank our colleagues Dinh
V. Huynh and Sergio R. Lopez-Permouth at Ohio University for their assistance.
We would also like to thank the staff of the American Mathematical Society for
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their hard work and we are especially indebted to Ms. Christine Thivierge for her
effort and professionalism in getting this project through.

Finally, we thank all of our colleagues who served as anonymous referees for the
papers presented here. Their meticulous review and thoughtful suggestions were
extremely helpful in the editing of this volume.

Editors
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Subgroups of Direct Products of Groups, Ideals and
Subrings of Direct Products of Rings, and Goursat’s Lemma

D. D. Anderson and V. Camillo

ABSTRACT. We give an exposition of Goursat’s Lemma which describes the
subgroups of a direct product of two groups. A ring version giving the subrings
and ideals of a direct product of two rings is also given.

In group theory there are three important constructions of new groups from
old groups: (1) the subgroup H of a group G, (2) the quotient or factor group G/H
where H is a normal subgroup of G (denoted H <« G), and (3) the direct product
G1 X Gy of two groups G; and Gs. For each of these three constructions, we can
ask what are the subgroups? The answer in the first two cases is easy. A subgroup
L of H is just a subgroup L of G contained in H (a subgroup of a subgroup is a
subgroup!) and by the Correspondence Theorem a subgroup of G/H has the form
J/H where J is a subgroup of G with H C J C G (moreover, J/H <G/H if and
only if J<G). The third case is more difficult and is the focus of this article: Given
groups G; and G, find all the (normal) subgroups of G; x Gs.

Given two groups G and Gy, the direct product G; x Gy of G1 and G5, is the set
of ordered pairs {(g1,92)|g: € G:} with coordinate-wise product (g1, g2)(h1, hg) =
(g1h1, g2h2). Here (1,1) is the identity element and (g1,92) ! = (gl_l,gz—l). If H;
is a subgroup of G;, then H; x Hj is easily checked to be a subgroup of G; x Gs.
Moreover, H; x Hs is a normal subgroup of G; X G» if and only if each H; < Gj.
Let us call a subgroup of G; x Gy of the form H; x Hy a subproduct of G x Gs.
A beginning abstract algebra student may be tempted to conjecture that every
(normal) subgroup of a direct product of two groups is a subproduct. The standard
counterexample is Zg X Zy with normal subgroup {(0,0),(1,1)} where (Zy,+) is
the integers mod 2 under addition.

There is a way to describe the subgroups of G; x G2 going back to E. Goursat
[4] in 1889 which involves isomorphisms between factor groups of subgroups of G;
and G;. Briefly, given subgroups H;; <H;2 C G; and an isomorphism f:H;2/Hy; —
Hy,/Hy, H = {(a,b) € Hi2 X Hos|f(aH;1) = bH2 } is a subgroup of G; x G2 and
each subgroup of G; x G is of this form; moreover, a criterion for H to be normal
is given. This is presented in Theorem 4.

Math Subject Classification (2000): primary 20-02, secondary 20D99, 16-02
Keywords: Direct product, Goursat’s Lemma
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In contrast, if R; and Rs are rings with identity, then every ideal of R; x Ry
has the form I; x I; where I; is an ideal of R;. Of course, if R; and Ry do not have
an identity, this result is no longer true. Indeed, if we endow (Z3,+) with the zero
product 0-0=0-1=1-0=1-1=0, then {(0,0), (1,1)} is an ideal of Zy x Z,.
In Theorem 11 we give a ring version of Goursat’s Lemma that describes the ideals
and subrings of the direct product R; x Ry of two rings and in Theorem 14 we give
a module version.

We also consider the following two questions:

(1) What pairs of groups G1, G2 have the property that every (normal) subgroup
of G1 X G5 is a subproduct of G; x G2 (recall that a subgroup H; x H, is called a
subproduct of G; x G3)?

(2) What pairs of rings Rj, R2 have the property that every subring (ideal) of
Ry X Rs is a subproduct of Ry X Ry?

At the end of the paper we give a brief biographical sketch of E. Goursat and
a history of his lemma.

It is our contention that Goursat’s Lemma is a useful result that deserves to
be more widely known. Indeed, we show that the Zassenhaus Lemma (Theorem 8)
is a corollary of Goursat’s Lemma. This article could be used in a first abstract
course as it makes good use of the three important constructions, subgroups, factor
groups, and direct products, and of isomorphisms. The only prerequisites from
group theory are a good understanding of subgroups, normal subgroups, factor
groups, direct products, and isomorphism. In one place (the proof of Theorem
4(1)) the First Isomorphism Theorem for groups is used, but this can easily be
avoided. For the ring portion one only needs to be familiar with rings, subrings,
ideals, ring isomorphisms, and direct products of rings.

Goursat’s Lemma

As a warm up, we first determine the pairs of groups G, G2 for which every
subgroup of G; x G5 is a subproduct. A group G is nontrivial if |G| > 1. The
proof is based on the well known result given below that a direct product G; x G,
of two nontrivial groups is cyclic if and only if G; and G4 are finite cyclic groups
with |G1| and |G5| relatively prime.

LEMMA 1. Let G; and G2 be nontrivial groups. Then G1 x G3 is cyclic if and
only if G1 and Gy are finite cyclic groups with ged(|G1],|G2|) = 1.

PROOF. (=) Suppose that G; x Gz is cyclic, say G1 x G2 = ((g1,92)). Let
g € Gy, s0 (g,1) = (g1, 92)™ for some integer n. So g = g} and gy = 1. This gives
that G1 = (g1) and g has finite order. Likewise, g; has finite order and G5 = (g2).
Let o(g;) = n; where o(g;) denotes the order of g;. Then o((g1,92)) = |G1 X G2| =
ning. However, if £ = lem(ny, ny), then (g1,92)¢ = (1,1). So £ = ning, that is,
ged(ng, ne) = 1. (<) Suppose that G; = (g;) where |G;| = n; with ged(nq,n2) = 1.
Certainly (g1,62)"" = (7)™, (g*)™) = (1,1). But (1,1) = (g1, 2)¢ implies
g¢ = 1; so n;|¢. Since ged(ny,n2) = 1, nina|l. So (g1, g2) has order nyny and hence
((91,92)) = G1 x Ga. O

THEOREM 2. Let G; and Go be nontrivial groups. Then every subgroup of
G1 x Gy is a subproduct if and only if for g; € G;, g; has finite order o(g;) and
ged(o(g1),0(g2)) = 1.
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PRrROOF. (=) Let g; € G; — {1}. Then ((g1, g2)) is a subproduct of G; x G, so
((91,92)) = (91) % (g2). By Lemma 1, g; has finite order and ged(o(g1),0(g2)) = 1.
(<) Let H be a subgroup of G; x G2 and let (g1,92) € H. Since ged(o(g1),
o(g2)) = 1, the proof of Lemma 1 gives that ((g1,92)) = (91) x (g2). So (g1,1),
(1,92) € H. Thus H = H, x H, where H; = {g € G1|(9,1) € H} and H, = {g €
Gg|(1,g)€H}. O

We shift gears for a moment and look at subrings of Ry x Ry where R; and
R, are rings with identity. Since {(0,0),(1,1)} is a subring of Zy x Z;, a subring
of R; X Rs having the same identity as Ry X Ry need not be a subproduct. With
Theorem 2 (or Lemma 1) in mind, it is easy to characterize the pairs of rings R, Ry
with identity such that every subring of R; x Ry containing the identity of R x Ry
is a subproduct. Recall that the characteristic of a ring R, denoted by char R, is
the least positive integer n with na = 0 for all a € R (or just with n1 = 0 if R has
an identity) or 0 if no such n exists.

THEOREM 3. Let Ry and Ry be rings with identity. Then every subring of
Ri x Ry with identity (1,1) is a subproduct of Ry X Ry if and only if each R; has
nonzero characteristic char R; and ged(char Ry, char Ry) = 1.

PROOF. (=) The prime subring Z(1,1) = {n(1,1)|n € Z} of R; x R, is a
subring of R; x Ry containing (1,1). So Z(1,1) = S; x Sy where S; is necessarily
the prime subring of R;. Hence the direct product of the two additive cyclic groups
S1 and S, is cyclic. By Lemma 1, S; and Sy are finite with ged(|Sy], |S2]) = 1;
that is, char R; # 0 and ged(char Ry, char Ry) = 1.

(<) Conversely, by Lemma 1 the conditions on char R; give that Z(1,1) =
Zlg, X Z1g,. Let S be a subring of R; x Ry with (1,1) € S. Then (1,0),(0,1) €
Z(1,1) C S. So if (s1,s2) € S, then (s1,0), (0,s2) € S. Thus S = S; x S where
S1 = {s € Ry|(s,t) € S for some t € Ry} (resp., S; = {t € Ry|(s,t) € S for some
s € S1}) is a subring of Ry (resp., R») containing the identity of Ry (resp., Rz). O

We next give a version of Goursat’s Lemma for groups.

THEOREM 4. (Goursat’s Lemma for Groups) Let G1 and G be groups.

(1) Let H be a subgroup of G1 x Gy. Let Hyy = {a € Gi|(a,1) € H}, Hy; =
{a € G3|(1,a) € H}, Hi2 = {a € Gi|(a,b) € H for some b € Gz}, and Hyy =
{b € G3|(a,b) € H for some a € G1}. Then H;; C H;s are subgroups of G; with
H;; < Hyy and the map fy:Hi2/Hy1 — Hae/Ho given by fy(aHy1) = bHy, where
(a,b) € H is an isomorphism. Moreover, if H << G; x G2, then H;jy,His < G; and
H;3/H;; C Z(G;/H;1), the center of G;/H;; .

(2) Let Hiy1 < Hjp be subgroups of G; and let f:Hia/H11 — Haz/Ha1 be an iso-
morphism. Then H = {(a,b) € Hi2 x Ha|f(aH11) = bHa21} is a subgroup of
G1 x G3. Further suppose that H;1, Hiz < G; and H;3/H;1 C Z(G;/H;1). Then
H <Gy x Gy.

(3) The constructions given in (1) and (2) are inverses to each other.
PROOF. (1) It is easily checked that H;; C H;y are subgroups of G;; or observe that

we may identify H;; with H N G; and H;; = m;(H) where 7;:G; X Go — G is the
projection map. Also, H;; << H;2. Wedo thecasei = 1. Nowa € Hy; = (a,1) € H.
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Let ¢ € Hja; so there exists b with (¢, b) € H. Now (¢ tac, 1) = (¢,b)"!(a, 1)(c,b) €
H so ¢ lac € Hy;. Define f:H12 — Hyy/Hy by f(a) = bHy; where (a,b) € H.
If (a,b),(a,c) € H, then (1,b7'c) = (a,b)"(a,c) € H implies b~lc € Hy and
hence bHy; = cHj;. So f is well-defined. It is easily checked that f is a surjective
homomorphism with kerf = H;:. Indeed, if a € ker f, then for (a,b) € H, b € Hy;.
But then (1,b) € H, so (a,1) = (a,b)(1,b)~' € H which gives a € Hy;. So by
the First Isomorphism Theorem, fg:H12/H11 — Haa/Ho; is an isomorphism. It is
easily checked that H <1 G1 x G, implies H;; <1 G;; or use the previous identification
with the intersection with G; and projection onto G;. Also, for g € G; and a € Hy,
with (a,b) € H, (g7 'ag,b), (a=1,b7') € H give (a"'g~lag,1) € H and hence
a_lg_lag € Hy;1. So H12/H11 - Z(Gl/Hll) Likewise, H22/H21 C Z(Gz/Hzl)

(2) It is easily checked that H is a subgroup of Hiz X Haz and hence of Gy x Ga.
Indeed, if (a,b),(c,d) € H, then f(aHi1) = bHz; and f(cHi1) = dHai. So
f(CLCHH) == f(aHuCHl]) = f(aHn)f(cHu) = bHQldel = dem and f(a"lHn) =
f((aHu)‘l) = (f(aHu))*l = (szl)_l = b_lel. So (ac, bd), (a_l,b_l) € H.
Further, suppose that H;; < G; and H;/Hy1 € Z(Gi/H;1). We show that
H <1 G; x Gy. Let (al,ag) € H and (gl,gg) € G1 xGy. So Hip <« G; gives
(97 'a191,95 "azgz) € Hiz x Hyo. And Hip/Hiy C Z(Gi/Hi1) gives g; 'aigiHin =
aiH;1, 50 f(g7 a1g1H11) = g3 'azg2Ha1. Thus (97 'a191, g5 'azgz) € H.

(3) Clear. O

The reader may have noticed that the proof in Theorem 4(2) that H is a
subgroup did not use the fact that f is a bijection. Indeed, for any homomorphism
f:Hyi2/Hy1 — Hay/Hz, H is a subgroup. However, if we set im f = Hj,/Ho;
where H), is a subgroup of Hj; with Hay < H), and ker f = Hy;/H11 where Hy; C
H{; < His, then f induces the isomorphism f’:H12/H{; — Hj,/H> and the same
subgroup H.

Note that the subproduct H = H; x H, corresponds to Hy; = His = H;
and Hyy = Hop = Hy; so fy:Hy/H, — Hy/H; is the trivial map. We illustrate
Goursat’s Lemma by finding all (normal) subgroups of S5 x Ss.

EXAMPLE 5. The subgroups of S3xS3. First, the subgroups of S3 are ((1)),
((12)), ((13)), ((23)), ((123)) = As, and S3. Of these, ((1)), Az, and S3 are normal.
We have the following subnormal quotient groups H/K where K < H C S3 grouped
by order: (a) [H/K| = 1; ((1))/((1)), ((12)})/((12)), ((13))/((13)), ((23))/{(23)),
A3/As,  S3/S3; (b)) |H/K| = 2: ((12))/((1)),  ((13))/((1)),
((23))/((1)), S3/As; () |H/K| = 3: A3/((1)); (d)|H/K| = 6: S3/((1)). Note
that within each of the four classes, the quotient groups are all isomorphic. Class
(a) has only the identity maps between the 6 different quotients; so there are 36
different isomorphisms f:H13/H11 — Haz/Ha yielding the 36 different subprod-
ucts ((1)) x ((1)),---,83 x S3. Of these 9 are normal. Class (b) has 4 groups
of order 2. Since there is a unique isomorphism between two groups of order 2,
there are 16 different isomorphisms f:H12/Hy1 — Hag/Hz yielding 16 distinct
subgroups. For example, the isomorphism ((12))/{(1)) — ((13))/((1)) gives the
subgroup {((1),(1)), ((12),(13))}. There are 9 such subgroups each of order 2.
The isomorphism ((12))/{(1)) — S3/As gives the subgroup {((1), (1)), ((1), (123)),
((1),(132)), ((12),(12)), ((12),(13)), ((12),(23))} and there are 6 such subgroups
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each isomorphic to S3. The isomorphism S3/As — S3/As gives rise to the sub-
group E = {(a,b) € S3 x S3|(a,b) € A3 x Az or o(a) = o(b) = 2}. Note that E
has 9 elements of order 2 and hence is not isomorphic to a subproduct of S3 x Ss.
So this gives a total of 16 subgroups in this class and as only the last one satisfies
His/Hi C Z(G/Hi), only E is a normal subgroup. Class (c) has only one group
of order 3 but two isomorphisms ((123))/((1)) — ((123))/((1)). The identity map
gives the subgroup {(z,z)|x € A3} which is isomorphic to Az and the isomorphism
given by (123) — (132) gives the subgroup {((1), (1)), ((123), (132)), ((132), (123))}
which is isomorphic to As. Neither subgroup is normal. Finally, for class (d) there
are 6 isomorphisms S3 — Si, each given by conjugation. (It is well known that
for n # 2, 6 each automorphism of Sy, is inner, that is, a conjugation on S,, and
Aut(S,) & S,; see for example, [9, Theorem 7.4].) Thus this class has 6 subgroups:
G, = {(a,071ao)|a € S3} for o € S3. Note that each is isomorphic to Sz, but none
are normal.

In summary Sz X S3 has 60 distinct subgroups, 10 of which are normal. More-
over, each of these subgroups except E 1is isomorphic to a subproduct.

This example raises the following question.

QUESTION 6. What pairs of groups G1 and G2 have the property that every
(normal) subgroup of G1 x G2 is isomorphic to a subproduct of G1 x G2 ?

It is not hard to prove that a pair of finitely generated abelian groups G; and
G satisfy the condition of Question 6. But we have shown that the pair S3, S5 does
not. Also, if G is a rank two indecomposable abelian group, then G is isomorphic
to a subgroup of Q x @, but not to a subproduct of Q x Q.

We next show how you can use Goursat’s Lemma to prove Theorem 2. By
Goursat’s Lemma every subgroup of G X G5 is a subproduct if and only if the only
pairs of normal subgroups H;1 < H;; C G; with Hy5/Hy; and Hyy/Hs; isomorphic
are the trivial ones H;; = H;s. So suppose that every subgroup of G; x G» is
a subproduct. Then for g; € G; and m; > 1 with (g."*) # (g:), (91)/(97"*) and
(g2)/{g5"*) can not be isomorphic. From this it follows that each order o(g;) is
finite and ged(o(g1), o(g2)) = 1. Conversely, suppose that each g; € G; has finite
order and ged(o(g1), (0(g92)) = 1. Then H;2/H;; are groups in which every element
has finite order and the order of each element of Hy5/H;; is relatively prime to
the order of each element of Hyy/H12. Thus we can have Hya/Hy; and Hop/Hio
isomorphic only in the trivial case that H;; = H;3. But then every subgroup of
G1 x G5 is a subproduct.

We next use Goursat’s Lemma to determine the pairs of nontrivial groups G;
and G, with every normal subgroup of G; x G5 a subproduct. Certainly if every
subgroup of G; x G2 is a subproduct, every normal subgroup is a subproduct.
However, note that G; X G2 may have every normal subgroup a subproduct without
having every subgroup a subproduct. For let G be any nonabelian simple group.
Then certainly G x G has subgroups that are not subproducts. However, the only
proper, nontrivial normal subgroups of G X G are G x {1} and {1} x G. This easily
follows from Theorem 4.

THEOREM 7. Let Gi and G2 be nontrivial groups. Then the following are
equivalent.

(1) Every normal subgroup of G1 x Gy is a subproduct.
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(2) There do not exist normal subgroups H;y G H;s C G; with Hio/Hyy C Z(Gi/Hi1)
and Hq3/Hi; isomorphic to Haz/Ho;.

(3) Omne of the following two conditions holds.

(a) G1 or Gy is residually centerless. (A group G is residually centerless if for
each homomorphic image G, Z(G) = {1}.)

(b) For each mormal subgroup H; < G;, Z(G;/H;) is torsion and ged(o(g1),
o(g2)) =1 for g; € Gi/H,i.

PRrROOF. (1)<(2) This follows from Theorem 4. (2)=>(3) Suppose that (a) does
not hold. Suppose that there is a normal subgroup H; < G; with Z(G1/H;) hav-
ing an element § (g € G) of infinite order. Let Hy < Gy with Z(Gy/Hy) # {1}.
Let 1 # h € Z(Go/H3)(h € G3). Since g € Z(G1/H,) (resp., h € Z(G2/H>)),
Hy C (9)H1 < Gi with (g) = (9)H1/H1 C Z(G1/H,) and Hy C (h)Hz < G
with (h) = (h)Hy/Hs C Z(G2/Hz). If h has infinite order, then (g)H;/H; and
(hYHy/H, are isomorphic, a contradiction. So o(h) = n > 1. But then (¢")H;
and (g)H; are normal subgroups of G; with (g)H1/(¢")H1 C Z(G1/(g")H1) and
(9)H1/{g™)H, is cyclic of order n. Thus (g)H,/(g")H, and (h)H/H, are isomor-
phic; a contradiction. Thus for each normal subgroup H; < G;, Z(G;/H;) must be
torsion. Suppose that there are normal subgroups H; < G; with elements g; € G;
such that g;H; € Z(G;/H;) and ged(o(g1H1), o(g2H2)) # 1. Then Z(G,/H,)
and Z(Ga/Hs) have elements g;H; (¢, € G;) with o(g;Hy) = o(gyHz) > 1. But
then (gy)H;/H; and (gy)Hy/H, are isomorphic; a contradiction. (3)=>(2) Sup-
pose there exist normal subgroups H;; € H;e C G; with His/Hy C Z(G;/H;)
and Hiy/Hj; isomorphic to Hyy/Hy;. Then there are elements h; € H;o/H;i with
1 < o(h1) = o(hy) < o0, a contradiction. O

We next show how Goursat’s Lemma can be used to prove the Zassenhaus
Lemma [9, Lemma 5.8]: if A< A* B < B* are subgroups of a group G, then the
groups A(A* N B*)/A(A* N B) and B(B* N A*)/B(B* N A) are isomorphic. The
Zassenhaus Lemma plays a key role in the proof of the Schreier Refinement Theorem
[9, Theorem 5.9] which states that two subnormal series for a group have equivalent
refinements which in turn is used to prove the Jordan-Holder Theorem [9, Theorem
5.10]: any two composition series of a group G are equivalent.

THEOREM 8. (Zassenhaus Lemma) Let G be a group and A< A* and B < B*
subgroups of G. Then A(A* N B) <1 A(A* N B*), B(B*N A)<B(B*N A*) and the
quotient groups A(A*NB*)/A(A*NB) and B(B*NA*)/B(B*NA) are isomorphic.

PrOOF. Let H = {(ac,bc) € G x Gla € A, b € B, c € A*N B*}. We first
show that H is a subgroup of G x G. Let (ac,be), (a'c’,b'c’) € H where a,a’ €
A, bt € B, and c,c/ € A* N B*. Now A 1 A* gives ca’ = ac and ¢ la~! =
a*c”! for some a@,a* € A and B a B* gives cb’ = bc and ¢ b1 = b*c¢! for
some b,b* € B. So (ac,bc)(a'c’,b'c’) = (aca’c,beb'c’) = (aacc,bbec’) € H and
(ac,be)™! = (¢c7la7t,¢7b71) = (a*c!,b*c¢™!) € H. Now using the notation of
Goursat’s Lemma (Theorem 4), we determine the H;;’s. Certainly Hio = A(A* N
B*) and Hy; = B(B* N A*) (which shows that they are subgroups of G). Now
Hy; ={acla € A, c€e A*NB*, (ac,1) e H} = {acla € A, c€ A*NB* c=b""1 for
some b € B} = {acla € A, c € A*N B} = A(A* N B). Likewise Hy; = B(B* N A).
Thus from H;; < H;, we get that A(A* N B) is a normal subgroup of A(A* N B*),
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B(B* N A) is a normal subgroup of B(B* N A*) and since Hy3/H1; and Hay/Ho
are isomorphic, the proof is complete. O

We next turn to direct products of rings and their ideals and subrings. If R;
and Rj are rings, and I; and I are ideals of R; and Rs, respectively, then I3 x I,
is an ideal of Ry X Ra. Similar statements hold for right and left ideals. If R; and
R, have an identity, then it is well known that every ideal (right, left, or two-sided)
has this form. This is our next proposition.

PROPOSITION 9. Let R; and Ry be rings with identity. Then every (right, left,
two-sided) ideal of Ry X Ry has the form I; x Iy where I; is a (right, left, two-sided)
ideal of R;.

PROOF. Let I be a left ideal of Ry x Ry. Let I1 = {a € Ry|(a,0) € I}
and I = {a € R2|(0,a) € I}. It is easily checked that I; is a left ideal of R;.
Let (a,b) € I; x I, then (a,0),(0,b) € I, so (a,b) = (a,0) + (0,b) € I. Hence
I, x I C I. Conversely, suppose that (a,b) € I. Then (a,0) = (1,0)(a,b) € I;
so a € I,. Likewise (0,b) = (0,1)(a,b) € I; so b € I;. Hence (a,b) € I x Iz and
1 - Il X 12. O

Of course Proposition 9 may fail if R; and Rz do not have an identity. For
example, if we take Ry = Ry = (Z3,+) where Z; has the zero product, then
{(0,0),(1,1)} is an ideal of Zy x Zy that is not a subproduct. We next give a
partial converse to Proposition 9. Let us call a ring R a left e-ring if for each r € R
there exists an element e, € R, depending on r, with e,.r = r. Note that R is a left
e-ring if and only if RI = I for each left ideal I of R. The next result comes from

(1].
THEOREM 10. For a ring R the following statements are equivalent.

(1) R is a left e-ring.
(2) For each ring S, every left ideal of R x S is a subproduct of left ideals.
(3) Fvery left ideal of R X R is a subproduct of left ideals.

PROOF. (1)=>(2) Let I be a left ideal of R. For (a,b) € I choose e, € R with
eq.a = a. Then (a,0) = (eq4,0)(a,b) € I. Hence (0,b) = (a,b) — (a,0) € I. Then as
in the proof of Proposition 9 we have I = I; x I where I; = {a € R|(a,0) € I} and
I, = {be€ S|(0,b) € I'}. (2)=(3) Clear. (3)=(1) Let a € R. Then the principal left
ideal generated by (a,a), ((a,a))e = {(r, s)(a,a) + n(a,a)|r,s € R,n € Z}, is a left
ideal of R x R. So ((a,a))e = I1 x I, where I; and I, are left ideals of R. Certainly
a € I;,s0 (a)y C I;. And as ((a,a))e C (a)¢ X (a)e, we have ((a,a))e = (a)e X (a)e-
Thus (a,0) € ((a,a))e¢; so (a,0) = (e1, e2)(a, a)+n(a,a) for some e; € R and n € Z.
Hence a = eja+na and 0 = epa+na; so a = e;a+na = eja—eza = (e —ez)a. 0O

We leave it to the reader to define a right e-ring and to state versions of Theorem
10 for right ideals and two-sided ideals. Note that if { R, } is any nonempty family
of left e-rings, then their direct sum @R, with coordinate-wise operations is again
a left e-ring. In particular, an infinite direct sum of rings each having an identity
is both a left and right e-ring, but does not have an identity.

We next give versions of Goursat’s Lemma for ideals and subrings of a direct
product of rings.
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THEOREM 11. (Goursat’s Lemma for Ideals and Subrings) Let S; and Sy be
Tings.

(1) Let T be an additive subgroup of S; x Sa. Let Ty, = {s € S;|(s,0) € T},
Ti2 = {s € S1|(s,t) € T for some t € Sy}, To; = {t € S2|(0,t) € T}, and
T2 = {t € S2|(s,t) € T for some s € S1}. Then T;y C T;p are subgroups
of (Si, +) and the map fr:Ti2/T11 — Tea/T21 given by fr(s+T11) = t+Tn;
for (s,t) € T is an abelian group isomorphism.

(a) Suppose that T is a left (resp., right, two-sided) ideal of S; x Ss.
Then T;1 C Tio are left (resp., right, two-sided) ideals of S; with
SiTia C Ty (resp., Ti2S; C Ti1, SiTi2 C Ty and T32S; C Tiy).

(b) Suppose that T' is a subring of S1 x S3. Then T;s is a subring of
S; and T;; is an ideal of T;a. Moreover, fr:Tia/Ti1 — Tas/To; is
a ring isomorphism. Further, suppose that each S; has an identity
ls,. Then T contains (1s,,1s,) if and only if 15, € Tiz and fr(ls, +
T11) = 1s, + To1.

(2) Conversely, suppose that T;; C Tja C S; are additive subgroups with
abelian group isomorphism f:Ti2/T11 — Taz/To;.

(a) If SiTis C T;1 (resp., TinSi € Ti1, SiTiz C Ty and T;2S; C T;1), then
T = {(a, b) € T12 X ng[f(a + T11) =b+ T21} is a leﬁ (resp., 'right,
two-sided) ideal of Sy X Ss.

(b) Suppose that T;s is a subring of S;, that T;1 is an ideal of T;2, and
fT2/Ti1 — Ta/Toy is a ring isomorphism. Then T = {(a,b) €
Tio X T22|f(a + Tn) =b+ T21} is a subring of S x Sa. Moreover,
if each S; has an identity 1g,, then (1s,,1s,) € T if and only if
ls, € Tiz and f(l + Tll) =1+ T5;.

(8) The constructions given in (1) and (2) are inverses to each other.

PROOF. (1) The facts that T;; C T;; are subgroups of (S;,+) and that fr is an
abelian group isomorphism follow from Theorem 4.

(a) Suppose that T is a left ideal of S; x S3. Let s € S; and t € Tio where
(t,t') € T for some t' € S;. Then (st,0) = (s,0)(¢,t') € T implies st € T;;. Hence
S1T12 C T1;. This also shows that T7; C Tio are left ideals of S;. The proofs of
the other cases are similar.

(b) Suppose that T is a subring of S; x Sy. Let t1,t5 € T12 where (t1,t)), (t2,t5) € T
for some t},t5 € So. Then (t1ta, t1th) = (t1,t))(t2,t5) € T gives tits € Th1o. Hence
T12 is a subring of S;. If actually ¢t € T11, then we can take t5 = 0, so (¢1t2,0) € T
gives t1to € T1; and hence Ti; is a left ideal. Similarly T7; is a right ideal and
hence is a two-sided ideal. Likewise, T5s is a subring of S; and T5; is an ideal of
Toz. Now fr(t; + T11) = t; + To1; so fr((ty + Th1)(t2 + T11)) = fr(tita + Ti1) =
tlltf? +Tp = (t’l + Tgl)(t’Q + T21) = fT(tl =+ Tll)fT(tg + T11); hence fr is a ring
isomorphism. Suppose that each S; has an identity 1g,. Certainly (1g,,1s,) € T
gives 1g, € Tjy and that fr preserves identities. Conversely, if 1g, € Tj2, then
fr(ls, +Ti1) = 1s, + T2 gives (1s,,1s,) € T.

(2) Suppose that T;; C T;, are additive subgroups of (S;,+) and that f:Tio/T1; —
T22/T5; is an isomorphism. By Theorem 4, T = {(a,b) € Ti2 x Ta2|f(a + T11) =
b+ Ty} is an additive subgroup of S; x Ss.



