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LIE METHODS IN GROWTH OF GROUPS AND GROUPS
OF FINITE WIDTH

LAURENT BARTHOLDI AND ROSTISLAV I. GRIGORCHUK

ABSTRACT. In the first, mostly expository, part of this paper, a graded Lie
algebra is associated to every group G given with an N-series of subgroups.
The asymptotics of the Poincaré series of this algebra give estimates on the
growth of the group G. This establishes the existence of a gap between
polynomial growth and growth of type eV™ in the class of residually—p
groups, and gives examples of finitely generated p—groups of uniformly
exponential growth.

In the second part, we produce two examples of groups of finite width
and describe their Lie algebras, introducing a notion of Cayley graph for
graded Lie algebras. We compute explicitly their lower central and di-
mensional series, and outline a general method applicable to some other
groups from the class of branch groups.

These examples produce counterexamples to a conjecture on the struc-
ture of just-infinite groups of finite width.

1. INTRODUCTION

The main goal of this paper is to present new examples of groups of finite
width and to give a method of proving that some groups from the class of
branch groups have finite width. This provides examples of groups of finite
width with a completely new origin and answers a question asked by several
mathematicians. We also give new examples of Lie algebras of finite width
associated to the groups mentioned above.

The first group we study, &, was constructed in [Gri80] where it was
shown to be an infinite torsion group; later in [Gri84] it was shown to be of
intermediate growth. The second group, &, was already considered by the
second author in 1979, but was rejected at that time for not being periodic.
We now know that it also has intermediate growth [BG98] and finite width.

Our interest in the finite width property comes from the theory of growth
of groups. Another important area connected to this property is the theory
of finite p-groups and the theory of pro-p-groups; see [Sha95b], [Sha95a, §8]

1991 Mathematics Subject Classification. 20F50,20F14,17B50,16P90.

The authors express their thanks to the Swiss National Science Foundation; the second
author thanks the Russian Fund for Fundamental Research, research grant 01-00974 for
its support.



2 L Bartholdi and R I Grigorchuk

and [KLP97] with its bibliography. More precisely, the following was dis-
cussed by many mathematicians and stated by Zel’'manov in Castelvecchio in

1996 [Zel96):

Conjecture 1.1. Let G be a just-infinite pro-p-group of finite width. Then
G is either solvable, p-adic analytic, or commensurable to a positive part of a
loop group or to the Nottingham group.

Our computations disprove this conjecture by providing a counter-example,
the profinite completion of & (it is a pro-p-group with p = 2). Note that it
exhibits a behaviour specific to positive characteristic: indeed it was proved
by Martinez and Zel’'manov in [MZ99] that unipotence and finite width imply
local nilpotence.

Before we give the definition of a group of finite width, let us recall a
classical construction of Magnus [Mag40], described for instance in [HB82,
Chapter VIII|. Given a group G and {G,}3; an N-series (i.e. a series of
normal subgroups with Gy = G, Gpy1 < G, and [Gp, Gr] < Gyr for all
m,n > 1), there is a canonical way of associating to G a graded Lie ring

(1) £(6) =@ L.,

where L, = G,,/Gn+1 and the bracket operation is induced by commutation
in G. Possible examples of N-series are the lower central series {7,(G)}3;;
for an integer p, the lower p-central series given by P;(G) = G and P, 1(G) =
P,(G)P[P.(G),G); and, for a field k, the series of k-dimension subgroups
{G,}2, defined by

G,={9€G|g—1€ A"}, n=12,...

where A is the augmentation (or fundamental) ideal of the group algebra
k[G].

Tensoring the Z-modules L, with a suitable field k, we obtain in (1) a
graded Lie algebra Ly (G). In case the N-series chosen satisfies the additional
condition GE < Gy, and k is a field of characteristic p, the algebra Lix(G) will
then be a p-algebra or restricted algebra; see [Jac4l] or [Jac62, Chapter V],
the Frobenius operation on Li(G) being induced by raising to the power p in
G. In this case the quotients G, /G,+1 are elementary p-groups.

Many properties of a group are reflected in properties of its corresponding
Lie algebra. For instance, one of the most important results obtained using
the Lie method is the theorem of Zel’'manov [Zel95a] asserting that if the Lie
algebra Lp, (G) associated to the dimension subgroups of a finitely generated
periodic residually-p group G satisfies a polynomial identity then the group
G is finite (IF, is the prime field of characteristic p). This result gives in
fact a positive solution to the Restricted Burnside Problem [VZ93, Zel95b,
VZ96, Zel97]. Another example is the criterion of analyticity of pro-p-groups
discovered by Lazard [Laz65].
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The Lie method also applies to the theory of growth of groups, as was
first observed in [Gri89]. There the second author proved that in the class
of residually-p groups there is a gap between polynomial growth and growth
of type eV™. This result was then generalized in [LM91, Theorem D] to the
class of residually-nilpotent groups, and in [CG97] the Lie method was also
used to prove that certain one-relator groups with exponential-growth Lie
algebra Ly(G) have uniformly exponential growth. If a group G is finitely
generated, then its Lie algebra Lix(G) = @ L, ® k is also finitely generated,
and the growth of £yx(G) is by definition the growth of the sequence {b, =
dim(L, @ k)}2,.

The investigation of the growth of graded algebras related to groups has
its own interest and is related to other topics. One of the first results in this
direction is the Golod-Shafarevich inequality [GS64] which plays an important
role in group, number and field theories. The idea of Golod and Shafarevich
was used by Lazard in the proof of the aforementioned criterion of analyticity
(he even used the notation ‘gosha’ for the growth of the algebras). Vershik and
Kaimanovich observed the relation between the growth of gosha, amenability,
and asymptotic behaviour of random walks (see Section 4 below).

For our purposes it will be sufficient to consider only the fields Q and
F,. Let G, be the corresponding series of dimension subgroups, which is
also an N-series, and let Li(G) be the associated Lie algebra. If Ly(G) is of
polynomial growth of degree d > 0, then the growth of G is at least ™' ~/“*?,
and if Lx(G) is of exponential growth, then G is of uniformly exponential
growth.

If k = Q and G is residually-nilpotent and b, = 0 for some n, then G is
nilpotent; indeed G, must be finite for that n, whence v, (G) is finite too, and
since (;>; %(G) = 1 this implies that yx(G) = 1 for some N. It follows that
G has polynomial growth [Mil68]. In fact polynomial growth is equivalent to
virtual nilpotence [Gro81a).

If k = F, and G is a residually-p group and b, = 0 for some n, then G
is a linear group over a field, by Lazard’s theorem [Laz65] and therefore has
either polynomial or exponential growth, by the Tits alternative [Tit72].

Finally, if b, > 1 for all n then, independent of k, the growth of G is at
least eV™. Keeping in mind that polynomial growth b, ~ n? of £ (G) implies
a lower bound ™ "“*? for the growth of G, we conclude that examples of
groups with growth exactly eV™ are to be found amongst the class of groups
for which the sequence {b,}32, is uniformly bounded, or at least bounded in
average. This key observation leads to the notion of groups of finite width.
We present two versions of the definition:

Definition 1.2. Let G be a group and k € {Q,F, } a field. If k = Q, assume
G is residually-nilpotent; if k = IF,,, assume G is residually-p.
1. G has finite C-width if there is a constant K with [1,(G) : 7,4+1(G)] < K
for all n.



4 L Bartholdi and R I Grigorchuk

2. G has finite D-width with respect to k if there is a constant K with
b, < K for all n, where {b,}2, is the growth of Lix(G) constructed
from the dimension subgroups.

A third notion can be defined, that of finite averaged width; see [Gri89)
or [KLP97, Definition I.1.ii]. From our point of view D-width is more natural;
but the first notion is more commonly used in the theory of finite p-groups
and pro-p-groups, see for instance [KLP97, Definition I.1.i]. The examples
we will produce are of finite width according to both definitions. That one
of our groups has finite width was conjectured in [Gri89); it was proven that
the numbers b,, are bounded in average. Rozhkov then confirmed this con-
jecture in [Roz96a] by computing explicitly the b,; but the proof had gaps,
one of which was filled in [Roz96b]. We fix another gap in the “Technical
Lemma 4.3.2” of [Roz96b] while simplifying and clarifying Rozhkov’s proof,
and also outline a general method, connected to ideas of Kaloujnine [Kal46].

We recall in the next section known notions on algebras associated to
groups, and construct in Section 3 a torsion group of uniformly exponential
growth. Section 5 describes a class of groups acting on rooted trees, and the
next two sections detail for two specific examples the indices of the lower
central and dimensional series. More specifically, we compute in Theorem 6.6
and 7.6 the indices of these series for the group & and an overgroup &. We
also obtain in the process the structure of the Lie algebras L(®) (associated
to the lower central series) and Lr,(®) (associated to the dimension series)
in Theorem 6.7, and that of L(®) and Lp,(®) in Theorem 7.7. They are
described using Cayley graphs of Lie algebras, see Subsection 6.1.

Throughout this paper groups shall act on the left. We use the notational
conventions [z,y] = zyz~'y~! and z¥ = yzy L.

Both authors wish to thank Aner Shalev and Efim Zelmanov for their
interest and generous contribution through discussions.

" 2. GROWTH OF GROUPS AND ASSOCIATED GRADED ALGEBRAS

Let G be a group, {71,(G)}s2, the lower central series of G, k € {Q,F,}
a prime field, A = ker(¢) < k[G] the augmentation ideal, where (3 kig;) =
> ki is the augmentation map k[G] — k, and {G,}2, the series of dimension
subgroups of G [Zas40, Jen41]. Recall that

G.={9€Glg-1€A"}.

The restrictions we impose on k are not important, as G, depends only on
the characteristic of k. We suppose throughout that G is residually-nilpotent
if k = Q and is residually-p if k = F,.

If k = Q, then G, is the 1solator of 1.(G), as was proved in [Jen55] (see
also [Pman77, Theorem 11.1.10] or [Pas79, Theorem IV.1.5)); i.e.

Grn = V1(G) = {g € G| ¢° € Y.(G) for an £ € N}.
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Note that in [Pman?77] these results are stated for finite p-groups. They never-
theless hold in the more general setting of residually-nilpotent or residually-p
groups.

If k = F,, then 7,(G) < G £ y/1(G), and the G, can be defined in
several different ways, for instance by the relation

G.= [[ 7©

ipi>n
due to Lazard [Laz53], or recursively as
(2) Gn =[G, Gn|GY,

where [n/p] is the least integer greater than or equal to n/p. In charac-
teristic p, the series {G,}32, is called the lower p-central, Brauer, Jennings,
Lazard or Zassenhaus series of G. The quotients G,/G,+; are elementary
abelian p-groups and define the fastest-decreasing central series with this
property [Jen55].

Let

A(G) = A4(G) = P artt/ar
n=0

be the associative graded algebra with product induced linearly from the
group product (see [Pman77, Pas79] for more details).

If k = Q, consider the following graded Lie algebras over k:

LG) =P (Cn/Cnt1©2Q),  L(G) =P (1(G)/1m1(C) 2 Q).

n=1 n=1
If k = I, consider the restricted Lie F,-algebra
‘CP(G) = @ (Gn/Gn+1)‘
n=1

Then Quillen’s Theorem [Qui68] asserts that A(G) is the universal en-
veloping algebra of £(G) in characteristic 0 and is the universal p-enveloping
algebra of £,(G) in positive characteristic.

Let us introduce the following numbers:

an(G) = dimy (A" /A™), bn(G) = rank(G,/Gny1)-
Here by the rank of the G-module M we mean the torsion-free rank
dimg(M ® Q) in characteristic 0 and the p-group rank dimg, (M ® F,),
equal to the minimal number of generators, in positive characteristic. Note
that in zero-characteristic b, = rank(v,(G)/7»+1(G)), because the natural
map
’Yn(G)/’7n+l(G) - Gn/Gn+1

has finite kernel and cokernel.
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The following result is due to Jennings. The case k = F, appears in [Jen41]
and the case k = Q appears in [Jen55]; but see also [Pman77, Theorem 3.3.6

and 3.4.10].

® 12, (222)"©@ ifk=F
3) an (G)t" = { e . v
g [T (=#) ifk=Q

The series Y o ,a.(G)t" is the Hilbert-Poincaré series of the graded al-
gebra A(G). The equation (3) expresses this series in terms of the numbers
bn(G); the relation between the sequences {a,(G)}22, and {b,(G)}22, is quite
complicated. We shall be interested in asymptotic growth of series, in the fol-
lowing sense:

Definition 2.1. Let f and g be two functions Ry — R;. We write f X g if
there is a constant C > 0 such that f(z) < C + Cg(Cz + C) for all z € R,
and write f ~gif f 2gandg 3 f.

A series {a,}52, defines a function f : R, — Ry by f(z) = a|;, and for
two series a = {a,} and b = {b,} we write a X b and a ~ b when the same.
relations hold for their associated functions.

The main facts are presented in the following statement:

Proposition 2.2. Let {a,} and {b,} be connected by the one of the rela-
tions (3). Then

1. {b,} grows exponentially if and only if {a,} does, and we have

bn

Ina, 1
lim sup et e lim sup

n—oo n n—oo

2. If by ~ n? then a, ~ e™“*/ 7,

Proof. We first suppose k = Q, and prove Part 1 following [Ber83]. Let
A = limsup(lna,)/n and B = limsup(lnb,)/n. Clearly A > B as a, > b,
for all n; we now prove that A < B. Define

(e}
f@)=Tla-em)™,
n=1
viewed as a complex analytic function in the half-plane R(z) > B. We have
|1 —e™™*|71 < (1 — e™®%)~, from which |f(z)| < f(Rz). Now applying the
Cauchy residue formula,

1
n = o Fu+iv)er®™ gy < —/ |f(u+iv)|e™dv < €™ f(u)

for all u > B, so

Ina,
A=1imsup2—§ lim sup <u+ nf(u)) = B.

n—o0 n u>B,n—oo

For k = IF,,, Part 1 holds a fortiori.
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Part 2 for k = Q is a consequence of a result by Meinardus ([Mei54]; see

also [And76, Theorem 6.2]). More precisely, when b, = n, his result implies
that

an =

ki

, 1-2¢(—d)
ed'(=d ((d +1)!I¢(d + 2)) Z44d o giz(gd-y-l)!fgdnz)ﬁlﬂ
2n(d+ 2)n

where ‘~’ means that the quotient tends to 1 as n — oo, and ( is the Riemann

zeta function.
We sketch the proof for k = Q below: we suppose that b, ~ n¢, so
A = B =0 by Part 1, and compute

d+1
—lnf Z bn e—nu ~ ud+2 Z eny — 1

=1
1 o] d+1 O
———/ nd dw = ——.
0

ud+2 ew — 1 udt+2

n

Thus In f(u) ~ C/u!, and the inequality

) log a, < nu+ log f(u) ~ nu + C/u?
is tight by the saddle-point principle when the right-hand side is minimized.
This is done by choosing u = n~'/(4+2) whence as claimed log a,, ~ n!~1/(4+2)

Finally, we show that (3) yields the same asymptotics when k = F, as
when k = Q. Clearly

ﬁ(l + ") < ﬁ(l F " 4 DR ﬁ 148, )
n=1 n=1 n=1

for all p > 2, where for two power series Y e} and Y f,t" the inequality
Ye} <3 fot™ means that e, < f, for all n. It thus suffices to consider the
case p = 2. For this purpose define

g9(2) = [J@ + e,
n=1
and compare the series developments of log(f) and log(g) in e™*. From
—log(1—z) =Y, 5, & it follows that

Ing an ! fn=Z$,

n>1 dn
—1)d+1

lOgg Zgn ) n:Z(Ta

n>1 din

so both series have the same odd-degree coefficients, and thus log f ~ log g.
Their exponentials then have the same asymptotics; more precisely, f, <
gon—1 for all n, so e”log f(2z) < log g(2) termwise, and f(2z) < g(z). O
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2.1. Growth of Groups. Let G be a finitely generated group with a fixed
semigroup system S of generators (i.e. such that every element g € G can be
expressed a product g = s; . ..s, for some s; € S). Let y5(n) be the growth
function of (G, S); recall that it is

v&(n) = #{g € G| |g| < n},
where |g| is the minimal number of generators required to express g as a

product.
The following observations are well-known:

Lemma 2.3. Let G be a group and consider two finite generating sets S and
T. Then 73 ~ &, with ~ given in Definition 2.1.

It is then meaningful to consider the growth ~g of G, which is the ~-
equivalence class containing its growth functions ~3.

Lemma 2.4. Let G be a finitely generated group, H < G a finitely generated
subgroup and K a quotient of G. Then vy 3 v¢ and vk 3 7.

Proof. Let S be a finite generating set for H; choose a generating set T' D> S
for G. Apply Definition 2.1 with C' = 1 to obtain 7§ < 7&. Clearly vk(n) <
7&(n) for all n. m|

Lemma 2.5 ([Gri89]). For any field k and any group G with generating set
S the inequalities a,(G) < v2(n) hold for alln > 0.

Proof. Fix a generating set S. The identities
zy—1= (z—1)+(y—1)+(z—1)(y—-1), zl-1=—(z—1)—(z-1)(z"1-1)
show that
zy—1=(z-1)+(y-1), zl-1=—(x—1) mod A?,
so A™ is generated over k by A™! and elements of the form
zo(s1 — 1)z1(sa — 1) ... (5, — 1)z,

for all s; € S and z; € k[G]. Now z; = £(z;) € k modulo A, so A"/A™! is
spanned by the

(81—1)(52—1)...(871'-1), s; €S.

All these elements are in the vector subspace S,, of k[G] spanned by products
of at most n generators, and by definition S, is of dimension v3(n). O

Corollary 2.6. {a,(G)}2, 2 v¢-
Combining Proposition 2.2 and Lemma 2.5, we obtain as

Corollary 2.7. If there exist C > 0 and d > 0 such that b, > Cn? for alln,
then ya(n) 7 € =@ In particular, if b, # 0 for all n, then ya(n) = eV™.

We shall say a group G is of subradical growth if v¢ 3 ev™,



