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The rupture trace of the 1983 M, 7.3 Borah Peak, Idaho earthquake (Lost
River fault zone) approximately 50 m north of the Doublesprings Pass Road,
is dominated by a 15-m-wide graben. One year after the rupture, a 3-4-m-
deep, 45-m-long trench (left and lower center) was excavated across the fault
trace to identify and characterize paleoearthquakes; note persons in trench
at far left for scale. The sense and amount of 1983 displacements at this
location closely mimicked those of the previous earthquake (ca. 5000-6000
years ago), suggesting characteristic earthquake behavior at this location (see
Chapter 9). Photograph taken in April 1985, 17 months after the rupture. The
log of this trench is shown in Schwartz and Crone, 1985.
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Preface

A clear sign of the youth of paleoseismology has been the lack of a comprehen-
sive book on this rapidly developing field of research. This book is designed
to meet this need for an overview volume, one that outlines the concepts
behind and techniques used in current investigations. Books by Wallace (1986),
Vita-Finzi (1986), and particularly Crone and Omdahl (1987) partly filled this
need in the late 1980s. In many ways this book is an outgrowth of Crone and
Omdahl’s volume, which summarized the “Directions in Paleoseismology”
conference convened by the U.S. Geological Survey. The scope of paleoseis-
mology has expanded so rapidly in the past decade, however, that even full-
time paleoseismologists have difficulty maintaining an awareness of important
developments throughout the specialty. A parallel development is that pa-
leoseismologists, many of whom had previously worked in relative isolation
within their respective countries, began to collaborate in the late 1980s. There
is also an increasing awareness of the value of collaboration with specialists in
structural geology, geodesy, and seismology for solving paleoseismic problems
(Wallace, 1986; Weldon, 1991). Such timely collaboration makes it easier for
us to provide a broader perspective on many aspects of paleoseismology than
would have been possible a decade ago. This book appears at a time in the
development of paleoseismology when some techniques have become routine
and some concepts widely accepted, but when many other aspects of the field
are still rapidly evolving (Vittori et al., 1991).

Much of the emphasis throughout the book is on techniques and case
histories, for two reasons. First, as in other field sciences, the techniques of
field data collection greatly influence the final interpretation of phenomena.
In our view, some current differences in field techniques used by different
research groups have contributed to differences in seismotectonic models that
rely heavily on paleoseismic data. For example, the models of characteristic
earthquakes and fault segmentation (Wesnousky et al., 1984; Schwartz and
Coppersmith, 1984; Schwartz and Sibson, 1989a) currently in vogue in the
United States have been partly justified by paleoseismic data collected in
trench exposures of normal and strike-slip faults. In Russia, paleoseismic
reconstruction relies heavily on slope failure phenomena (see Chapter 8) and
the faults themselves are rarely trenched (Solonenko, 1977; Nikonov, 1988a,
1995). Perhaps as a result of this more indirect approach, the temporal and
spatial occurrence of large paleoearthquakes in Russia has been interpreted
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Xviii Preface

as more random. In a parallel example, the study of paleoliquefaction in
unconsolidated deposits in the United States (by geologists and civil engineers)
has focused on developing criteria to distinguish coseismic liquefaction fea-
tures from similar features of nonseismic origin, and on characterizing the
responsible paleoearthquake. In European studies of “‘seismites’ in semicon-
solidated rocks of Cenozoic and Mesozoic age (by stratigraphers and sediment-
ologists), sediment deformation is often merely assumed to be seismic in
origin, but rarely is this proven or related to any particular fault. These
examples suggest that, at this stage in the development of paleoseismology,
paleoseismologists would probably benefit from a global-scale discussion and
standardization of terminology and field techniques.

The second reason for an emphasis on techniques is that all chapter authors
are active field researchers in paleoseismology, and each has helped to develop
some of the techniques described. In particular, we emphasize the need to
integrate geomorphic and stratigraphic studies of paleoearthquake evidence,
by correlating landforms and processes in deformation zones to their corre-
sponding depositional environments and stratigraphy.

The book is aimed primarily at a graduate to professional level audience
in geology, geography, or geophysics, although we assume some familiarity
with geomorphology (physical geography) and Quaternary geology. Through-
out the book, we try to keep in mind the needs of practitioners who collect
and interpret paleoseismic data. Other scientists, engineers, and planners who
use paleoseismic data in engineering design or land-use planning may find the
overview chapters (1 and 2) and the summary of Chapter 9 most useful.

I acknowledge the assistance of many colleagues who shared their knowl-
edge of paleoseismology. In particular, I thank the reviewers of various parts
and drafts of the book, many of whom have at least as broad a perspective
on paleoseismology as we do. These include T. K. Rockwell, A. J. Crone,
S. L. Wesnousky, R. C. Bucknam, S. L. Obermeier, and S. Pezzopane (Chapter
1), A. R. Nelson (Chapter 2), D. A. Ostenaa and M. Hemphill-Haley (Chapter
3), T. Parsons and J. Zollweg (Chapter 4), J. D. Sims and R. Campbell (Chap-
ter 7), and R. L. Schuster (Chapter 8). Fanchen Kong, V. S. Khromovskikh,
and Yoko Ota provided historical perspectives on the development of paleo-
seismology in China, Russia, and Japan, respectively. In addition A. R.
Nelson reviewed much of the book and upgraded its content and exposition
to a high standard. Dan and Sue Doylen of Master Graphics (Estes Park,
Colorado) provided expert assistance in preparing the figures. Finally, I
gratefully acknowledge a decade of support from the U.S. Geological Sur-
vey’s National Earthquake Hazards Reduction Program, without which my
research, and many of the concepts and techniques reported in this book,
never would have been developed.

James P. McCalpin
Estes Park, Colorado
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