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Preface

This book arises from original research of the authors on hypercomplex numbers
and their applications ([8] and [15]-[23]). Their research concerns extensions to
more general number systems of both well-established applications of complex
numbers and of functions of a complex variable.

Before introducing the contents of the book, we briefly recall the epistemo-
logical relevance of Number in the development of Western Science. In his “Meta-
physics of number”, Pythagoras considered reality, at its deepest level, as math-
ematical in nature. Following Pythagoras, Plato (Timaeus) explained the world
by the regular polygons and solids of Euclidean geometry, laying a link between
Number, Geometry and Physical World that represents the foundation of Modern
Science. Accordingly, Galileo (Il Saggiatore § 6) took geometry as the language
of Nature. These ideas that may appear trivial to modern rationalism, still have
their own validity. For example, imaginary numbers make sense of algebraic equa-
tions which, from a geometrical point of view, could represent problems that admit
no solutions. Despite such an introduction, complex numbers are strictly related
to Euclidean geometry (Chap. 3) and allow formalizing Euclidean trigonometry
(Chap. 4). Moreover, their functions are the means of representing the surface
of the Earth on a plane (Chap. 8). In more recent times, another astonishing
coincidence has been added to the previous ones: the space-time symmetry of
two-dimensional Special Relativity, which, after Minkowski, is called Minkowski
geometry, has been formalized [18] by means of hyperbolic numbers, a number
system which represents the simplest extension of complex numbers [81].

Finally, N-dimensional Euclidean geometries and number theory have found
a unified language by means of “Clifford algebra” [14], [42] and [45], which has
allowed a unified formalization of many physical theories.

In this book, we expose first the same thread of association between num-
bers and geometries; secondly we show how the applications of the functions of a
complex variable can be extended. In particular, after providing the basics of the
classical theory of hypercomplex numbers, we show that with the commutative
systems of hypercomplex numbers, a geometry can be associated. All these ge-
ometries except the one associated with complex numbers, are different from the
Euclidean ones. Moreover the geometry associated with hyperbolic numbers is as
distinctive as the Euclidean one since it matches the two-dimensional space-time
geometry. This correspondence allows us to formalize space-time geometry and
trigonometry with the same rigor as the Euclidean ones. As a simple application,
we obtain an exhaustive solution of the “twin paradox”. We suggest that, together
with the introductory Sect. 2.2, these topics could be used as background for a
university course in two-dimensional hyperbolic numbers and their application
to space-time geometry and physics, such as the mathematics of two-dimensional
Special Relativity.



viii Preface

After such algebraic applications of hyperbolic numbers, we broaden the
study of space-time symmetry by introducing the functions of a hyperbolic vari-
able. These functions allow us to extend the studies usually performed in Euclidean
space, by means of functions of a complex variable, to two-dimensional space-time
varieties. In addition, to offer to a larger audience the opportunity of appreciat-
ing these topics, we provide a brief discussion of both the introductory elements
of Gauss’ differential geometry and the classical treatment of constant curvature
surfaces in Euclidean space. Nevertheless, for a better understanding, the reader
should have a good knowledge of advanced mathematics, such as the theory of
functions of a complex variable and elements of differential geometry.

The applications of hyperbolic numbers to Special Relativity may increase
interest in multidimensional commutative hypercomplex systems. For these sys-
tems, functions can be introduced in the same way as for complex and hyperbolic
variables. Therefore, we introduce in three appendices an outline of a research
field that should be further developed for both a more complete mathematical
formalization and an examination of physical applications.

In Appendices A and B, we begin the study of commutative hypercomplex systems
with the four-unit system that has two relevant properties.

— Four unities closely recall the four-dimensional space-time.

— Their two-dimensional subsystems are given by complex and hyperbolic num-
bers whose applicative relevance is shown in the book.

Coming back to hypercomplex number systems, their algebraic theory was com-
pleted at the beginning of the XXth century [76] and concluded, in our view, with
the article Théorie des nombres written by E. Cartan for the French edition of the
Enciclopédie des sciences mathématiques [13]. This article is an extensive revision
of E. Study’s article for the German edition of the Encyclopedia (Enzyklopddie
der Mathematischen Wissenschaften). Both these authors made contributions to
the development of the theory of hypercomplex numbers. Today these numbers
are included as a part of abstract algebra [46], and only a few uncorrelated pa-
pers introduce their functions. Therefore, to give new insights and inspiration to
scientists interested in other fields (not abstract algebra), in Appendix C we give
a rigorous and self-consistent exposition of algebra and function theory for com-
mutative hypercomplex numbers by means of matrix formalism, a mathematical
apparatus well known to the scientific community.

As a final observation, we remark that in this book many different mathemat-
ical fields converge as a confirmation of David Hilbert’s assertion: Mathematics s
an organism that keeps its vital energy from the indissoluble ties between its vari-
ous parts, and — we shall add following Klein, who refers to Riemann’s ideas —
from the indissoluble ties of Mathematics with Physics and, more generally, with
Applied Sciences.

Since the content involves different fields, this book is addressed to a larger
audience than the community of mathematicians. As a consequence, also the lan-
guage employed is aimed at this larger audience.



Preface ix

It is a pleasant task for us to thank Prof. Stefano Marchiafava of Rome
University “La Sapienza”, for useful discussions and encouragement in many steps
of our work.



Contents

Preface

1 Introduction

2 N-Dimensional Commutative Hypercomplex Numbers
2.1 N-Dimensional Hypercomplex Numbers . . . .. .. .. ... ...

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6
2.1.7

Equality and Sum . . . ... ... ...
The Product Operation . . . .. ... ... ... ......
Characteristic Matrix and Characteristic Determinant . . .
Invariant Quantities for Hypercomplex Numbers . . . . . .
The Division Operation . . . .. ... ... ... ......
Characteristic Equation and Principal Conjugations

Decomposable Systems . . . . .. ...

2.2 The General Two-Dimensional System . . . . ... ... ... ...

2.2.1
2.2.2

Canonical Two-Dimensional Systems . . . . . . .. ... ..
The Two-Dimensional Hyperbolic System . . . ... .. ..

3 The Geometries Generated by Hypercomplex Numbers
3.1 Linear Transformations and Geometries . . . . . . .. .. ... ..

3.1.1
3.1.2

The Continuous Lie Groups . . . . . . . . .. .. ... ...
Klein’s Erlanger Programm . . . . . .. .. ... ... ...

3.2 Groups Associated with Hypercomplex Numbers . . . . . ... ..

3.2.1

Geometries Generated by Complex and Hyperbolic
NUmbers : :::::s suimammemmenossmi@Es 65

3.3 Conclusions . . . . . . . e e

4 Trigonometry in the Minkowski Plane
4.1 Geometrical Representation of Hyperbolic Numbers . . . . .. ..

4.1.1

4.1.2

Hyperbolic Exponential Function and Hyperbolic Polar

Transformation . . . . . . ... ... ... ... ...
Hyperbolic Rotations as Lorentz Transformations of Special
Relativity « - « ¢ s s v s s s mwmawmsaw s: 6553555 81

4.2 Basics of Hyperbolic Trigonometry . . . . . . . .. ... ... ...

4.2.1
4.2.2

Complex Numbers and Euclidean Trigonometry . . . . ..
Hyperbolic Rotation Invariants in Pseudo-Euclidean Plane

Geometry . . . . . ...
4.2.3 Fjelstad’s Extension of Hyperbolic Trigonometric Functions

4.3 Geometry in the Pseudo-Euclidean Cartesian Plane . . . . . . . . .

vii

NoBi B> NG BN

10
10
12
12
16
16

19
19
19
19
20

23
24

27
28

28
30

31
31



xii

Contents

4.4 Goniometry and Trigonometry in the Pseudo-Euclidean Plane . . .

4.5

4.6

4.4.1 Analytical Definitions of Hyperbolic Trigonometric

Functions . . . . . . . . . .. ..

4.4.2 Trigonometric Laws in the Pseudo-Euclidean Plane . . . . .
4.4.3 The Triangle’s Angles Sum . . . . .. ... ... ......

Theorems on Equilateral Hyperbolas in the Pseudo-Euclidean
Plane . . . . . . e
Examples of Triangle Solutions in the Minkowski Plane . . . . . .

Uniform and Accelerated Motions in the Minkowski Space-Time
(Twin Paradox)

9.1
9.2
5.3

Inertial Motions . . . . . . . . . .. ...
Inertial and Uniformly Accelerated Motions . . . . . .. ... ...
Non-uniformly Accelerated Motions . . . . . . ... ... ... ..
5.3.1 Frenet’s Formulas in the Minkowski Space-Time . . .. . .
5.3.2 Proper Time in Non-Uniformly Accelerated Motions . . . .

General Two-Dimensional Hypercomplex Numbers

6.1
6.2

6.3

6.4

Geometrical Representation . . . . . .. ... ... ... ... ...
Geometry and Trigonometry in Two-Dimensional Algebras i %y
6.2.1 The “Circle” for Three Points . . . . . . .. ... ... ...
6.2.2 Hero’s Formula and Pythagoras’ Theorem . . . . . ... ..
6.2.3 Properties of “Orthogonal” Lines in General Algebras

Some Properties of Fundamental Conic Sections . . . . . . ... ..
6.3.1 “Incircles” and “Excircles” of a Triangle . . . . . . ... ..
6.3.2 The Tangent Lines to the Fundamental Conic Section

Numerical Examples . . . . .. ... ... ... ... ........

Functions of a Hyperbolic Variable

7.1
7.2

7.3

7.4

Some Remarks on Functions of a Complex Variable . . . . . . . ..
Functions of Hypercomplex Variables . . . . . ... ... ... ...
7.2.1 Generalized Cauchy-Riemann Conditions . . . .. ... ..
7.2.2 The Principal Transformation . . . . . ... ... ... ...
7.2.3 Functions of a Hypercomplex Variable as
Infinite-Dimensional Lie Groups . . . . .. ... ... ...
The Functions of a Hyperbolic Variable . . . ... ... ... ...
7.3.1 Cauchy-Riemann Conditions for General Two-Dimensional
Systems . . . . . ...
7.3.2 The Derivative of Functions of a Canonical Hyperbolic
Variable . . . . . . . .. .

| 7.3.3 The Properties of H-Analytic Functions . . . ... ... ..

7.3.4 The Analytic Functions of Decomposable Systems . . . . .
The Elementary Functions of a Canonical Hyperbolic Variable

40

41
42
43

44
52

57
o8
61
69
70
70

73
73
76
76
7
79
79
79
82
83

87
87
89
89
91

92
93

93

94
95
95
96



Contents

10

7.5 H-Conformal Mappings . . . . . ... ... ... ... .......
7.5.1 H-Conformal Mappings by Means of Elementary Functions
7.5.2 Hyperbolic Linear-Fractional Mapping . . . . .. ... ...

7.6 Commutative Hypercomplex Systems with Three Unities . . . . .
7.6.1 Some Properties of the Three-Units Separable Systems . . .

Hyperbolic Variables on Lorentz Surfaces
8.1 Imtroduction . . . . .. ... ...
8.2 Gauss: Conformal Mapping of Surfaces . . . . . .. ... ... ...
8.2.1 Mapping of a Spherical Surface on a Plane . . . ... ...
8.2.2 Conclusions . . . . . . ...
8.3 Extension of Gauss Theorem: Conformal Mapping of Lorentz
Surfaces . . . . . . L
8.4 Beltrami: Complex Variables on a Surface . . . . . ... ... ...
8.4.1 Beltrami's Equation . . . . ... ... ............
8.5 Beltrami’s Integration of Geodesic Equations . . . . ... ... ..
8.5.1 Differential Parameter and Geodesic Equations . . . . . . .
8.6 Extension of Beltrami’s Equation to Non-Definite Differential
Forms . . . . .. . .

Constant Curvature Lorentz Surfaces

9.1 Introduction . . . . . . . . . . .. ...

9.2 Constant Curvature Riemann Surfaces . . . . . .. ... ... ...
9.2.1 Rotation Surfaces. . . . . . . .. ... ... ... ...
9.2.2 Positive Constant Curvature Surface . . . . . . ... .. ..
9.2.3 Negative Constant Curvature Surface . . . ... ... ...
9.2.4 Motions . . . . . ..
9.2.5 Two-Sheets Hyperboloid in a Semi-Riemannian Space

9.3 Constant Curvature Lorentz Surfaces . . . . . . .. ... .. ....
9.3.1 Line Element . . . . .. .. .. ... .. ... .. ......
9.3.2 Isometric Forms of the Line Elements . . . . .. ... ...
9.3.3 Equations of the Geodesics . . . . ... ... ... .....
9.3.4 Motions . . . . . ...

9.4 Geodesics and Geodesic Distances on Riemann and Lorentz
SUITACES: & 5 ¢ 2 5 5 % 5 5 5 8 % & 5 6 b 5 © 9 ol ol B b mom moo o n e
9.4.1 The Equation of the Geodesic . . . . . . ... ... .....
9.4.2 Geodesic Distance . . . . . . .. ... . ...

Generalization of Two-Dimensional Special Relativity

(Hyperbolic Transformations and the Equivalence Principle)

10.1 The Physical Meaning of Transformations by Hyperbolic
Functions . . . . . . . . . e

xiil

99

140
140
143



Xiv

Contents

10.2 Physical Interpretation of Geodesics on Riemann and Lorentz

Surfaces with Positive Constant Curvature . . . . . . . ... .. .. 164
10.2.1 The Sphere . . . . . . . .. .. ... ... .. 165
10.2.2 The Lorentz Surfaces. . . . . . . . ... ... ... ... .. 165
10.3 Einstein’s Way to General Relativity . . . . . .. .. .. ... ... 166
104 Conclusions . . . . . . . . .. 167
Appendices
A Commutative Segre’s Quaternions 169
A.1 Hypercomplex Systems with Four Units . . . . .. ... ... ... 170
A.1.1 Historical Introduction of Segre’s Quaternions . . . . . . . . 171
A.1.2 Generalized Segre’s Quaternions . . . . ... ... ..... 171
A.2 Algebraic Properties . . . . .. .. ... ... ... ... ... 172
A.2.1 Quaternions as a Composed System . . ... ... ... .. 176
A.3 Functions of a Quaternion Variable . . . . . .. ... ... ... .. 177
A.3.1 Holomorphic Functions . . ... ... ... ......... 178
A.3.2 Algebraic Reconstruction of Quaternion Functions Given a
Component . . . . ... . ... ... 182
A.4 Mapping by Means of Quaternion Functions . . . . . ... ... .. 183
A.4.1 The “Polar” Representation of Elliptic and Hyperbolic
Quaternions . . . . . . . .. ... 183
A.4.2 Conformal Mapping . . . ... ... ... ... ....... 185
A.4.3 Some Considerations About Scalar and Vector Potentials . 186
A5 Elementary Functions of Quaternions . . . . . . ... ... ..... 187
A.6 Elliptic-Hyperbolic Quaternions . . . . . . . .. ... ... ..... 191
A.6.1 Generalized Cauchy-Riemann Conditions . . . ... .. .. 193
A.6.2 Elementary Functions . . . . . ... ... ... ....... 193
A.7 Elliptic-Parabolic Generalized Segre’s Quaternions . . . . . . . .. 194
A.7.1 Generalized Cauchy-Riemann conditions . . ... ... .. 195
A.7.2 Elementary Functions . . . . ... ... ... ........ 196
B Constant Curvature Segre’s Quaternion Spaces 199
B.1 Quaternion Differential Geometry . . . . . . . ... ... ... ... 200
B.2 Euler’s Equations for Geodesics . . . . .. ... ... ... .... 201
B.3 Constant Curvature Quaternion Spaces . . . . ... ... ... .. 203
B.3.1 Line Element for Positive Constant Curvature. . . . . . . . 204
B.4 Geodesic Equations in Quaternion Space . . . . . ... .. ... .. 206
B.4.1 Positive Constant Curvature Quaternion Space . . . . . . . 210
C Matrix Formalization for Commutative Numbers 213
C.1 Mathematical Operations . . . . . .. .. ... ... ........ 213
C.1.1 Equality, Sum, and Scalar Multiplication . .. ... .. .. 214

C.1.2 Product and Related Operations . . . . ... ........ 215



Contents

C.1.3 Division Between Hypercomplex Numbers . . . . . . . . ..

C.2 Two-dimensional Hypercomplex Numbers . . . . . ... ... ...
C.3 Properties of the Characteristic Matrix M . . . . .. ... ... ..
C.3.1 Algebraic Properties . . . . ... ... ... .........
C.3.2 Spectral Properties . . . . . .. ... ... ... .......
C.3.3 More About Divisors of Zero . . . . ... ... ... ....
C.3.4 Modulus of a Hypercomplex Number . . . . . .. ... ...
C.3.5 Conjugations of a Hypercomplex Number . . . . .. .. ..
C.4 Functions of a Hypercomplex Variable . . . .. .. ... ... ...
C.4.1 Analytic Continuation . . . . . ... ... ... ... ....
C.4.2 Properties of Hypercomplex Functions . . . . . . ... ...
C.5 Functions of a Two-dimensional Hypercomplex Variable . . . . . .
C.5.1 Function of 2x2 Matrices . . . . .. . ... ... ......
C.5.2 The Derivative of the Functions of a Real Variable . . . . .
C.6 Derivatives of a Hypercomplex Function . . . . .. ... ... ...
C.6.1 Derivative with Respect to a Hypercomplex Variable . . . .
C.6.2 Partial Derivatives . . . . . . .. .. ... ... .......
C.6.3 Components of the Derivative Operator . . . . . ... ...
C.6.4 Derivative with Respect to the Conjugated Variables . . . .
C.7 Characteristic Differential Equation . . . ... ... ..... ...
C.7.1 Characteristic Equation for Two-dimensional Numbers . . .
C.8 Equivalence Between the Formalizations of Hypercomplex
Numbers. . . . . . .. . .
Bibliography
Index

XV

242

245

251



List of Figures

2.1

4.1

4.2

4.3
4.4
4.5

4.6

5.1
5.2
5.3
5.4

5.5

6.1

6.2

6.3

6.4

7.1

7.2

7.3

7.4
7.5

The three types of two-dimensional algebras as function of the
structure constants . . . . . . ... ..o L

The direction path on unitary hyperbola as the parameter 6 goes
from —ocoto+00 . ...

Graphic representation of the function cosh, 8 =

0< P <2 . o e e e
Two pseudo-orthogonal straight lines. . . . ... ... ... ....
A Euclidean demonstration of a pseudo-Euclidean theorem . . . . .

A FEuclidean-hyperbolic demonstration of a pseudo-Euclidean
theorem . . . . . . . . ...

A right-angled triangle. . . . . .. ... .. ... ... ... ....

The twin paradox for uniform motions. . . . . ... ... ... ..
The uniform and accelerated motions, first example. . . . . . . . .
The uniform and accelerated motions, second example . . . . . . .
The uniform and accelerated motions, third example . . . . . . ..
The uniform and accelerated motions, fourth example . . . . . ..

Incircle, circumcircle and ex-circles associated with the canonical
complex algebra. . . . . . .. ... L
The “incircle”, “circumcircle” and “ex-circles” for a general elliptic
algebra. . . .. L

The “inscribed” and “circumscribed” hyperbolas for a general
hyperbolic algebra . . . . . . ... ... ... L.

The “ex-inscribed” hyperbolas for a general hyperbolic algebra

H-conformal mapping of a rectangle by means of hyperbolic
exponential . . . . . .. ...

H-conformal mapping of a rectangle by means of the hyperbolic
COSINE . . . . . e e e

H-conformal mapping of a rectangle by means of the hyperbolic
SITIE & o ¢ s ¢ 5 6 58 3858 ¢ ¥ 8 B em@asS6 B @ & 6 o § 55 8 5 85 § 3

The square domain h-conformally mapped by the sine function

The triangular domain h-conformally mapped by the cosine
function . . . . . ...

62



xviii List of Figures

9.1 Projection of the sphere from the north pole into equatorial plane 144



List of Tables

4.1
4.2

9.1

9.2

Al

Map of the complete (z, y) plane by hyperbolic polar transformation 29
Relations between functions cosh,, sinh, and classical hyperbolic
functions . . . ... 35

Line elements and equations of the geodesics for constant curvature

Riemann and Lorentz surfaces . . . . . .. .. ... ... ...... 146
Equations of the geodesics and geodesic distance for constant cur-
vature Riemann and Lorentz surfaces . . . . . . ... ... .. ... 160

Generalized Segre’s quaternions . . . . . . . ... ... ... .... 172



