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Sin

Singular Control: Higher-Order
Conditions

The maximum principle (see Theorem 2 in the article
Maximum Principle) provides a necessary, but not suf-
ficient, condition that a control #* has a solution x( -, u*)
of

xX(1) = (e, x(2), u(1)) (1)

with x(¢, u*) € a5(r). Thus it is possible to have a solu-
tion pair x(-, u), n(-) of Eqn. (1) and

a
() = —n(1) gf(h x(t,u*), u*(1)) )

respectively, such that on an interval [0, 1,],

H(t, x(t, u), n(0), u(r)) = H(t, x(t, u), n(t), v),
Yve U

yet x(t, u) € int d(¢) for 1 € (0, ¢,]. This inequality could
not occur if the approximating cone K| to s(t,) at
x(t,,u) were all of R", motivating one definition of
singularity found in the literature, i.e., that the first-
order cone K at x(T, u) does not provide a sufficient
condition to determine whether or not x(7, u) € aA(T).
In general for such a solution we shall see that

H(t, x(t, u), (1), v)

is independent of v € U, i.e., the maximization in
M(t, x, n) = max{H(t,x, n, v):v € U} (3)

(see Eqn. 8 of Maximum Principle) provides no infor-
mation about any component of the control. It is also
possible that some but not all components of the control
are determined by the maximization. Another definition
of singularity utilizes this determination of control com-
ponents via the maximization of H, as in Eqn. (3), as
its basis. In some instances all definitions are equivalent,
in others they are not. Our approach will be to take an
overview which combines the essence of the various
definitions. In order to do this, we decompose the first-
order cone K/ as follows. Let u = (u,, ..., u,) be any
admissible control for system (1).

DEFINITION 1. K- is the first-order cone to s4(T) at
x(T, u) obtained from variations only in the ith com-
ponent of the control u during the interval t <t <T.

In other words, K. is the smallest closed, convex
cone containing tangent vectors arising from per-
turbation data s (linear in € as in the proof of the
maximum principle in the article Maximum Principle)
to the ith component of u. If 7 = 0, we shall not write

it. It follows that

n

IK',"={u' + -+ 0" € KY

K=

i

1=

DEFINITION 2. Consider the system (1) and assume

that for 7> 0, #(T) has nonempty interior relative

to R". The solution x(-, u) is singular on the interval
r<t<Tif dim K}, <n for some 1 <i<m.

It is totally singular on the interval [r,T] if
dim K!, < n. (Note that one may certainly have
dim K} <nforalli=1,...,m,yetdim K} ;, = n.)

For autonomcus smooth systems, one is usually inter-
ested in singularity on intervals of the form [0, 7], T> 0
and small. This occurs in the study of local controllability
(see Local Controllability). For nonautonomous (even
linear) systems, however, singular solutions on intervals

. [7, T], T >0, lead to interesting geometrical properties

of attainable sets.

Singular solutions arise naturally in systems having
the control appearing linearly, i.e., n-dimensional sys-
tems of the form

x(1) = X(x(1)) + ;lu,(l)Y‘(x(t)), x(0)=x"  (4)

with, say, |y, ()| <1,i=1,...,mand X,Y',... Y™
real-analytic vector fields on an n-dimensional manifold
M". For such systems the approximating cone K at a
point x(7, u) € A(T) with u such that

lu(n| <1,

is a subplane. In particular, let (exp £X)(x") denote the
solution of Eqn. (4) corresponding to u =0. Then if
K is the first-order cone to H(T) at (exp TX) (x°)
where 1— (exptrX) (x°) satisfies the maximum
principle, K} must be a proper (dim < n) subplane of
R".

Remark 1. If the system (1), or (4), has a (k < n)-
dimensional integral manifold M* (i.e., solutions begin-
ning on M* remain on M*) and k is minimal, one
says that the system admits a k-dimensional, minimal
realization. If #(7) has nonempty interior relative to
M*, then x(-, u) is singular (totally singular) on [z, T]
if dim K. < k for some i (dim K} , < k).

For the general system (1) it is difficult to calculate
the dimension of integral manifolds, $4(7) and the
K% For smooth systems of the form (4) these com-
putations are easier. This seems to be the underlying
reason why most literature on singular problems deals
with systems of the form (4). Questions concerning
(k < n)-dimensional integral manifolds, dim K%',
int A(T) # D etc., for system (4) are most naturally

0<t<T

4419
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Singular Control: Higher-Order Conditions

answered within the context of Lie algebras of vector
fields. Our approach will be to deal mainly with system
(4). Higher-order conditions for more general systems
of the form (1) have been treated in Krener (1977)
and Knobloch (1981); the basic ideas are similar but
computations are more involved.

1. Notation

Let M be a real-analytic, n-dimensional manifold and
X and Y be real-analytic, tangent vector fields on M. The
Lie product [X, Y] can be defined, via local coordinates
(xy,...,x,) on M, as

(X, Y](x) = X, () Y(x) = Y, (x)X(x)

with X, Y, denoting the Jacobian matrices of partial
derivatives. For a coordinate-free definition we can
consider a vector field as a differential operator acting
on smooth functions f: M — R!; we denote this Xf. Then

(X, Y]f = Y(Xf) - X(Yf)

for all smooth f. The real vector space of all real-analytic
vector fields on M, together with the Lie product, is a
Lie algebra (in general, infinite-dimensional) which we
denote by V(M). Let TM, denote the tangent space to
M at x. For € C V(M), L(€) denotes the Lie algebra
generated by €, i.e., the smallest subalgebra of V(M)
containing 6, and

b(x) ={v(x) ETM, :V € €}

Let (ad X, Y) = [X, Y] and inductively
(ad**'X,Y) = [X, (ad* X, Y)]

If € C V(M) a solution ¢ for the system € in an
absolutely continuous map t— ¢(f) € M such that ¢
(r) €€(¢(1)) p.p. A submanifold N of M is an integral
manifold of € if all solutions which begin on N remain
on N.

2. Theorems

The next, fundamental, theorem may be viewed as a
sharpening of the Frobenius theorem (i.e., the hypoth-
esis involves a condition on vector fields evaluated at a
single point) for real-analytic vector fields.

THEOREM 1 (Hermann 1963, Nagano 1966). Let M
be a real-analytic manifold, p € M and ¢ = {X*: « € A}
a collection of real-analytic vector fields on M. If
dim L(‘€)(p) = k then 6 (and L(6)) has a k-dimensional
integral manifold through p.

For variations and extensions of this type of result
to the C” category see Hermann (1963) or Sussmann
(1973).

Thus if we have a control system defined by a col-
lection of real-analytic vector fields €, as above, the
correct state space should be the integral manifold of
L(6) through the initial point x°. For example, system

4420

(4) may be viewed as the collection
‘€={X+za,)”:—ls(r,$1. i=1,... ,m}
i=1

The correct state space is therefore the integral manifold
of L(X,Y',...,Y") through x and relative to this
manifold

int U sA(t,x)#O

0s(=T

for any T>0 (Krener 1974). For our discussion of
singular solutions we need to know whether s4(T') has
nonempty interior relative to this integral manifold. It
is possible that if dim L(€)(x’) = k,

int U A+

O0=t=T

yet for each ¢, int 9{(r) = &. Let L be a Lie subalgebra
of V(M); its derived algebra

L'={[V,W]:V,WE L}

i.e., L' =[L, L]. For systems defined by analytic vector
fields the next theorem gives definitive results for
int A(T).

THEOREM 2 (Sussmann and Jurdjevic 1972). Let ¢ =
{X*: « € A} be a family of real-analytic vector fields on
a real-analytic manifold M, p € M and si(t, p) denote
the set of points attainable at time t by solutions of 6
initiating from p at t = 0. Let

!
Ly(€) = [2 A X% + W:l any integer,
i=1

X* €€, WE L'(€),A, real, 3, A, =0}

Then L((€) is an ideal of codimension at most one in
L(€). If dim L(‘€)(p) = k, a necessary and sufficient
condition that int A(t, p) # & (interior relative to the k-
dimensional integral manifold of L(6) through p) for all
t>0is that

dim L (‘€)(p) = dim L(6)(p) = k

For system (4), which has

C={X+QaY:|a|<1, i=1,...,m}
we define -
Fi={(ad” X, Y"):»=0,1,...}
Fl={(ad” X, Y"):i=1,... ,m;vr=0,1,...} (5
It follows that L (€)= L(¥') (Hermes 1976) which
yields the following corollary.

COROLLARY. Let X, Y',. .., Y™ be real-analytic vec-
tor fields on a real-analytic, n-dimensional manifold M
and HA(t,x°) denote the attainable set at time t for the
associated system (4). Suppose

dim L(X,Y', ..., Y")x") =k
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Then a necessary and sufficient condition that
int A(t, x°) # & (int relative to the integral manifold of
L(x,Y', ..., Y™ through x°) for all t >0 is that

dim L($")(x") = k

Insight into this result may be obtained as follows.
Let (exptX)(x) denote the solution at t of X = X(x),
and x(0) = x” and u be any admissible control for Eqn.
(4). If one attempts to write the solution x( -, «) of Eqn.
(4) as the composition

x(t,u) =

(exp tX) o y(t, u)
it is (locally) necessary and sufficient (Chen 1962) that
y satisfies

y=2u() 2 (~0/v(ad" X.Y)(y), y(0) ="

(6)
We refer to this as the auxiliary equation and denote its

attainable set, at time ¢, by %(t, x"). Then the attainable
set of Eqn. (4) satisfies

A, x") = (exp tX)B(t, x")

The map p — (exp tX)(p) is a homeomorphism hence
A(t, x") has nonempty interior if and only if the same is
true for %B(t, x"). Now if
dim L()(x") =k <dim L(X, Y', ..., Y")(x")

by Theorem 2, L(¥") has a k-dimensional integral mani-
fold through x°. Then all solutions of Eqn. (6) lie on
this manifold; %(z, x°) has empty interior and the same
holds for «(z, x°).

To summarize for system (4) we may (and will)

assume that M" is the minimal integral manifold of
L(X,Y', ..., Y™ through x°, i.e.,
dimL(X,Y',...,Y")(x")=n

Then intsd(t,x")# for all +>0 if and only if
dim L(¥")(x") = n, hence a solution x(-,u) will be
totally singular on [0, 7] if dim K < n where K} is the
first-order cone to (T, x°) at x(7T, u) as defined in the
article Maximum Principle.

We next study K}’ and K. It is convenient to assume
these are calculated at x(7,u) € d(T) where u=0,
i.e., at (exprX)(x") € 4(T). For any 0<t,<T and
perturbation data m, = (¢,,/,, v') it follows from

U:r,('l) =[f(t,,x(t;,u*), v")
= flty x (e u®),w* (@) (7)

(see Eqn. (10) in the article Maximum Principle), that

0r, ()= Z o}V ((exp 1, X))y

i.e., vy (#)) is a linear combination of

Yi((expt, X)(x")),. ... Y"((expt, X)(x"))

Now let D(exp tX) denote the differential of the map
p— (exptX)(p). Then D(exptX) is the fundamental
solution of the variational equation

y = F(t, x(t, u*), u*(0))y ®)

which is the identity at r =0, i.e.,
D(exp(T —1,)X) = Ay,

The element of K} which corresponds to v, (t,) is then

v, =D (exp(T - 1,)X) g‘. Lol Y'((exp £, X)(x"))

= D(exp(T - 1,)X) X, [0} Y’
i=1

X ((exp(t, = T)X) ° (exp TX)(x"))

||M5

2 (T = t,)"/v")(ad” X, Y')
X ((exp TX)(x)) ©)

A relatively easy consequence of (9) is the following
proposition (Hermes 1976).

PROPOSITION 1. The first-order approximating cone
K at a point (exp TX)(x") € A(T) for system (4) is

span #' ((exp TX)(x"))
Similarly,

K} = span $1((exp TX)(x"))

Remark 2. The relationships between the various
notions of singular solutions are as follows. First, we
have restricted attention to the case int 4(7T) # I rela-
tive to a minimal integral manifold M* of the system. If
this is not done and k < n, every point of «(7T) is a
boundary point relative to M"; for any control u the
first-order cone K} to #(T') at x(T, u) will be contained
in the tangent space to M* at x(T,u), denoted
TM,(, »-  n(T)#0is in TM?%,, and orthogonal to

MY 1., while 7 is extended to [0, 7] via the solution
of Eqn. (2) we will automatically have

H(t, x(t,u), n(t),v) =0

and is hence independent of v (see example 1). Thus
the maximization Eqn. (3) would not determine any
component of a control, but this occurs because of the
extraneous dimensions.

Next, turning to system (4), suppose int A(7) #
relative to M" and there exists a solution x( -, u) such
that the maximum principle does not determine some
component y; of u via the maximization as given in Eqn.
(3); or equivalently that there is a nonzero 7 satisfying
Eqn. (2) such that the Hessian of H, i.e., H,,, is not
definite along the solution pair x(-, u), n(- ) Since

H= n-X+n-(2 u,Y/)
=1

4421
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for Eqn. (4) this would mean there exists a nonzero
vector 7 satisfying

H=-— n(Xx(x(t, u)) + )=_‘,l u,-(t)Yx(x(t,u))>
such that ‘

nOY'(x(t,u)) =0
Differentiating this with respect to ¢ gives
nYi+n-Yix

=9 (xxy" +/_§qu{;> +nYi (X+/§lu,yf)

j=1

=- ﬂ(t){[X, Yt u)) = 2 w,(O[Y, Y')(x(e, u))]

In particular, if the solution we examine corresponds to

u =0, we have
N Y ((exp tX)(x")) =0

—n([X, Y]((exp tX)(x)) =0
and repeated differentiation gives

—n(1)(ad X, Y')((exp tX)(x")) = 0

This shows that the nonzero vector n(T) is orthogonal
to ¥"/((exp TX)(x")), hence, by Proposition 1,

dim K'' = dim span ¥ "((exp TX) (x°)) < n

showing that the two notions of singularity agree in this
case.

Remark 3. The assumption that the reference solution
is (exp tX)(x"), i.e., corresponds to u =0, makes the
calculation in Eqn. (9) easy. Had we chosen any « and
calculated K at x(T, u) € «(T) one finds

va(t)= _gl (0] = u, ()Y (x(t,,u))l,

with the sign of (v} —u,(t,)), v' € U, no longer necess-
arily arbitrary. One can conclude that K} is contained
in

span{(ad” X, W)(x(T,u)): WEL(Y',...,Y™)}

but computations are difficult. See Krener (1974) for
some examples.

In summary, for the systems (4),if X, Y',. .., Y"are
real-analytic vector fields on a manifold M and

dim L(X,Y',...,Y")(x")=n

then the system has an n-dimensional integral manifold
(the correct state space) through x°, call this M", such
that

int U o, x°)#2

O=sr<T

for all T > 0 (with interior relative to M"). A necessary
and sufficient condition that int(7,x°) #0 for each
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T>0 is that dim L(¥')(x") = n; we assume this. The
first-order approximating cone to &(T,x") at
(exp TX)(x") is

K’ = span ¥'((exp TX)(x"))

hence the solution t— (exp TX)(x") is totally singular
on [0, T] if

dim span &' ((exp tX)(x?))
<dim L(¥")((exp tX)(x")) =n

for sufficiently small > 0. Since D(exp tX) carries span
F'(x°) into span ¥'((exp tX)(x")) it follows that

dim K} = dim span ¥'((exp tX)(x?))

is constant with respect to ¢ (Hermes 1976) and hence
we obtain the following theorem.

THEOREM 3. Assume
dim L(X,Y',. .., Y")(x°) = dim L(¥)(x*) = n

The solution t— (exptX)(x") is a totally singular
solution of Eqn. (4) on some interval [0,T] if
dim span ¥'(x") < n.

EXAMPLE 1. We consider the system, on R?,
X,=x,+u
X,=x,+u
with x” = (x{,x9). Then by subtracting the equation it
follows that for any ¢ = 0, (r, x°) is a subset of the line
{(x1,x,) ER?*:x, —x, =ce'}

where ¢ = (x{ — x9). If this system is written in the form
of Eqn. (4),

X=x,x), Y=(,1)
dim L(X,Y)(x") =1, dimL(¥H(x") =1
dim span ¥!(x%) =1
and (exp £X)(x") is not a singular solution. On the other
hand, Eqn. (2) gives 7, = —n,, 1, = —n, hence
m@+n(0)=c e’
with
¢, = (T) + ny(T))

If we choose 1,(T) = —n,(T) # 0 (note that 5(T) is
then orthogonal to the line which contains #(T, x°)) we
have 7,(f) — n,(¢t) = 0 and for any control u € U,

H(t,x(t,u), n(t),u) = nl(t)xl(tvu) + ’Iz(t)xz(tau)

is independent of v € [—1, 1]. Thus if one defined a
solution x(-, u) to be singular if there exists a nonzero
solution 7(-) of Eqn. (2) such that the pair satisfy the
maximum principle

H(e,x(t,u*),n(0),u* (1)) = M(t, x(t,u*),n(r))  (10)

(see Eqn. (9) in the article Maximum Principle), every
solution, here, would be singular. Indeed, one could
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then make any problem singular by adding a “non-
controllable” additional dimension, i.e., adjoining an
equation X,,, =1 to Eqn. (1) and then choosing the
(n + 1)-dimensional vector n(T) to be perpendicular to
the hyperplane x, ., = T within which #(7) would lie.

EXAMPLE 2. Consider the system, on R?, with
X(x)=(1,x), Y(x)=(x,1)
that is

B =1+ ulx,, % =x, +u(l)

with x” = (0,0) and U =[—1, 1]. Then
(ad* X, Y)(x) = ((—=1)*x,,1), k=0,...

so dim span ¥'(x°) = 1, while
(ad’Y, X)(x) = (=2,0)

hence dim L(¥")(x") = 2. This shows that for each ¢t > 0,
int (1, x) # I, yet the first-order cone K to #(T,x")
at (exp TX)(x") is

span &' ((exp TX)(x")) ={(0, a):a € R'}

Thus t— (exp tX)(x°) = (¢, 0) is a singular solution and
(exp TX)(x°) may or may not be on d4(T, x"). If one
chooses n(T) = (1, 0), then n(¢) = (1,0) and

H(t, (exp tX)(x"), n(), v) = n(r) = 1

which shows the pair (exp tX)(x"), () does satisfy the
maximum principle.

We calculate a higher-order tangent vector for this
example. Let

—1if T—4e<t<T-3e,
+1if T—-3e<t<T—¢€

T—e=<t<T

u,,(t,e)={

Then u is an admissible control with corresponding
solution (using the exponential notation for solutions)

x,(T,e)=(expe(X —Y))o(exp2e(X+Y))
o(exp€e(X —Y))o(exp(—4eX))o(expTX)(x") (¥)
For0=<4e<T,
x.(T,€) € A(T, x")
while

x2(T,0) = (exp TX)(x")
Using the Campbell-Baker—-Hausdorff formula (Vara-
darajan 1974) on the right-hand side of (*), one can
show
x.(T, €) =exp((2€*/3)[[X, Y], Y]
+o(€%)) o (exp TX)(x") (**)

from which we conclude
lim dx.(7,€)/de=0
et —0

lim d’x.(T, €)/de? =0
lim d’x,(T, €)/de’ = 4[[X,Y],Y]((exp TX)(x"))

is a tangent vector to (7, x") at (exp TX)(x"). Since
([X. Y], Y]((exp TX)(x")) = (=2.0)

this tangent vector is not in K’; indeed (since it involves
two factors Y) it is in K%. As mentioned in Remark 3,
one could reparametrize, i.e., let €’ = g or € = ¢ and

x,(T,€)=y(T,o0)
=exp((20/3)[[X. Y]Y]+0(0)) (exp TX)(x")
and take
lim dy(7, 0)/do
o —0

to obtain this tangent vector. With 7, as in the proof
of the maximum principle (see Maximum Principle),
i.e., ny-0(T) <0 for all o(T) € KY, it is clearly also
necessary that if

(exp TX)(x") € 95A(T, x°)

then n;-v(T) <O for all v(T) € K} U K%, etc. This is
the essence of the higher-order maximum principle,
which will be stated shortly.

A kth-order tangent vector at (exp 7X)(x"), for sys-
tem (4), is an element W& L(¥') evaluated at
(exp TX)(x") which involves k factors Y, i.e., a product
of k elements of &'. It is interesting, and important, to
determine which elements in L(¥') can yield tangent
vectors. For example, as shown above,

[[X. Y]Y]((exp TX)(x"))

= = [V, [X, Y]I((exp TX)(x"))
can be a second-order tangent vector; its negative

cannot. Indeed (Krener 1977) for system (4) one has
the following theorem.

THEOREM 4. If h is the smallest integer such that for
some t, € [0, T},

[Y, (ad" X, Y)]((exp £, X)(x"))
€& span ¥'((exp tX)(x"))
then h is odd. A necessary condition that
(exp TX)(x°) € a(T, x")

is that there exists an 1) satisfying Eqn. (2) on [0, T] such
that

n(T)(—1)**V2[Y, (ad" X, Y)]((exp tX)(x")) <0
Another way to view this result is that
(=1)®*V2[Y, (ad" X, Y)]((exp 1, X)(x"))
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is a second-order tangent vector. This condition is
related to a second-order condition (Kelley et al. 1967)
for a control u* € AU having values u*(r) € (—1,1) to
lead to a solution x(-, u*) of Eqn. (4) having

x(T,u*) € ad(T, x")

Specifically, suppose u* is such; there then exists a
solution n of Eqn. (2) on [0, 7] satisfying the maximum
principle. Assume there is a smallest integer A such
that

d dr+! d
(5;) (W) (E)H(X(Lu*)-ﬂ(!)\n(l)‘u*(l))#:o

for some ¢ € [0, T]. Then A is odd and on [0, 77,

3 dh+l 3
{— 1)(/.+1)/2<£) (W) (%) H(x(t,u*),

(1), u*(1)) <0
is a necessary condition.

For details of how these conditions are related, and
more general results of this nature, see Krener (1977).
For further characterizations of which elements of L(¥")
can yield higher-order tangent vectors, a verification
that [Y, [X, Y]] is not such, etc., see Hermes (1978).

We next state the high-order maximum principle for
system (4); the statement for more general systems can
be found in Krener (1977).

THEOREM 5 (High-order maximum principle for sys-
tem (4)). A necessary condition to ensure that u* € 9 is
such that the corresponding solution x(-,u) of Eqn.
(4) satisfies x(T, u*) € a(t, x") is that there exists an
absolutely continuous n-vector function n defined on
[0, T'] such that

0y =-n [x,(x(:. u*)) + ; ur ()Y (x(t, u*))}

n(n)- [2. Y (x(t,u))(u; (1) —v,)J =0, Vov,€[-1,1]

and for any perturbation data
=ty 0,00, (.1, v'))

with corresponding perturbed control u, and solution at
T, denoted x (T, €) € (T, x"),

lim n(T) - (d"/de")x (T, e) <0
€=

lim (d'/dex (T.€)=0, 1<i<h-—1
et—0

The first two conditions are the analogs of Eqns. (2)
and (10) in the first-order maximum principle (Eqns.
(6) and (9) in Maximum Principle); the last condition
merely states that n(7) must be an outward normal to
a support plane for a local cone containing higher-order
tangent vectors.

For systems having one control component appearing
linearly, on two-dimensional manifolds, high-order nec-
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essary and sufficient conditions may be obtained via
the use of Green’s (or Stokes’) theorem. Specifically,
consider the two-dimensional system

X=Xx)+uY(x), x(0)=x° (11)

with X, Y smooth vector fields on a two manifold M?
and |u(r)| < 1. We assume the vectors X(x°), Y(x°) are
linearly independent and that w is a one form such that
if (w(x), X(x)) denotes its action on X,

(w(x), X(x)) =1, (o), Yx)=0 (12)
If x(-, u') is a solution of Eqn. (11) such that
x(0,u") =x", x(t(u'),u') =x!

and I'(u') is the orbit of x(-, u'), then from (10), the

line integral
f o =tu')
T

Let u' be another admissible control such that
x(0, u?) =x"
x(t(u?), u?) = x!
IF'=T(u")UT(u?)

bounds a region R of the plane within which the two
form dw is well behaved. Assume that by following the
solution x(-, u') from x° to x' and then the solution of
x(+, u?) backwards in time, from x' to x’, we traverse
the boundary of % in a counterclockwise direction.
Then

f w=1tu") - tu?) = f do
R

r

Thus the sign of dw in the region % can be used to
compare the times taken to reach x' via the controls u'
and u’. (One can show that this sign is determined,
locally, by the sign of (w, [X, Y]).) It follows that the
statement “dw is zero along the solution

1= (exp tX)(x")
with X, Y real-analytic” implies and is implied by
(w(x%), (ad* X, Y)(x"))=0, Vk=0,1,...

This implies dim span ¥' (x°) = 1, i.e., dw is zero along
a singular solution

1= (exp IX)(x")

The method is best illustrated by an example; further
details and results can be found in Hermes and Haynes
(1963).

EXAMPLE 2 (continued). With
X(x) = (1,x,), Y(x) = (x5, 1)
in local coordinates
w(x) = (1/(x3 — 1)(—dx, + x, dx,)
which is well defined for |x,| < 1.
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X2
T
R
dw<0
(exptx) (x9) I X
R
dw>0
Cwh

Figure 1
Green’s theorem method

Consider the problem of finding the solution which
initiates from x° = (0, 0) and reaches x' = (1, 0) in mini-
mum time. For this system (exptX)(p)=(¢,0); let
u’(t)=0 so the time to reach x' using control u" is
t(u") = 1. Now suppose u', u* are admissible controls
with, respectively, solutions x(-, u'), x(-, u?) such that

x(t(ul)’ ul) - x(t(HZ)' u2) = x!

and orbits, I'(«') in the half plane x, < 0 and I'(«?) in
the half plane x, = 0 (see Fig. 1). Then

H(u') — tu’) = f

®y

dw > 0ort(u’) <1(u')

H(u’) — Hu?) = J dw < 0ort(u") < t(u?)

R

It is not difficult to conclude that any solution joining
x"to x' and having orbit remaining in the region |x,| <1
will reach x! in a time =1, hence

(exp 1X)(x") € a(1,x")

i.e., u”=0 is the unique time-optimal control for this
problem.

Singular problems have not only intrinsic math-
ematical interest but seem to appear in applications
of optimal control. The literature on the subject is
extensive, making it virtually impossible to cover all
known results here. Some omissions are the work in
McDonnell and Powers (1971) on necessary conditions
at the junction of an optimal singular and nonsingular
solution; the relationship between singular problems,
the second variation and the Legendre-Clebsch con-
dition of the classical calculus of variations (Bell and
Jacobson 1975). The articles Bang—Bang Principle and
Local Controllability deal with questions related (in
the interesting cases) to singular solutions and treat
additional high-order conditions and aspects of the
singular problem.

See also: Bang-Bang Principle; Local Controllability;
Maximum Principle; Optimal Control: Singular Arcs
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Singular Perturbations: Boundary-Layer
Problem

A basic problem in control system theory is the math-
ematical modelling of a physical system. The realistic
representation of systems calls for high-order
differential equations in which the presence of some
“parasitic” parameters, such as masses, inductances,
capacitances, resistances and more generally small time
constants, is often the cause of the increased order of
these systems. If the suppression of small parameters
involves the degeneration of dimension, the system is
called “singularly perturbed.”
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Generally the singularly perturbed problem possesses
a two-timescale property owing to the simultaneous
presence of slow and fast phenomena and can be repre-
sented by a model as described by

dx/dt = f(x,y,u, €) } )

where x € R™ and y € R™ denote, respectively, the
slow and fast variables, u € R™ is the control law,
t € T'= [0, [ corresponds to current time and € € R*
represents a small parameter.

fiRm X R X R™ x R* - R™
R"‘XR" XRMXR+'—)R"

edy/dt=g(x,y,u,¢€)

and setting € = 0 in Eqn. (1) we obtain the degenerate
problem and the solution

dx,/dt = f(x,, y., u,0),

x:(O) =x0, (2)
0=g(x,,y.,u,0)

The solution of Eqn. (2) which corresponds to the slow
part of the evolution is called the outer solution.

In such a problem there exists a boundary-layer
domain where the solution changes rapidly and which
corresponds to the inner solution satisfying the initial
condition of Eqn. (1).

To study the behavior of y(-) near t = 0, the timescale
is stretched by introducing the transformation 7= t/e
in Eqn. (1) to obtain

dx/dt = €f(x, y, u, €),

x(s,O) =Xq
d}’/dT=g(x,y,u,e), ] (3)

y(€,0) =y,

A reasonable approximation of these equations, cal-
led the boundary-layer equations, may be obtained, for
t€ T, =0, ], by setting € = 0, which gives

Xg = Xo

(4)
dyy/dt = g(x¢, ys, u, 0),

y1(0) = ,Va]

EXAMPLE 1. Consider the singularly perturbed initial

problelll

X 0 =X

( ) 0 (5)
Gdy/d[ -~ XxX=y t u, ,Y(O) y()

dr/dt = —x+y +u,

with z = x + 2y the output of the system and u(r) = u,,.
The reduced (degenerate) system is obtained by setting
€ = 0. The solution of Eqn. (2) is then

xg=e ¥x, + (1 —e Mu,
Yo=up — € ¥xy — (1 — e )u,

Hence there is a discontinuity at ¢ = 0 (y,(0) # y,). The
evolution of y; deduced from Eqn. (4) is

y(r)=e Ty, + (1 —e ") (uy — xq)
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and in the boundary layer the output is approximated
by

zy(f) =xo + 2[3_'/6)’0 +(1- e_'/f)(uo =)

1. Boundary-Layer Problem

The singular perturbation method enables the overall
model of a process to be broken down into several
reduced ones describing in simplified form the suc-
cessive periods of evolution of the initial process. In
considering such an approach, we must note the fol-
lowing points.

(a) Comparison of Eqns. (1) and (2) shows that the
reduced solution evaluated at ¢ = 0 is an equilibrium
point of the zeroth-order boundary-layer equation,
hence the problem of stability of this equilibrium
point.

(b) Only one initial condition can be met in Eqn. (2)
which needs to allow a discontinuity in y at t = 0.

A solution to problem (a) has been proposed by
Tikhonov (1952), which leads, for example with a con-
stant input u, to the following Tikhonov theorem.

THEOREM 1. If the following conditions are satisfied:

(a) f(-) and g(-) are continuous in some open region 2
of their domains;

(b) the degenerate problem, Eqn. (2), and the full prob-
lem, Eqn. (1), both have unique solutions in some
interval 0<t<T;

(c) there exists an isolated root Vo=
Q, that is, glx,, p(x,)] =

(d) the root y, = ¢(x,) is an asymptotically stable equi-
librium point of Egn. (3);

¢(x,) of Eqn. (2) in

(e) the initial point (x,, y,) belongs to the domain of
influence of the root; then lim._,+x(€,t)=x/r)
uniformly in [0,T] and lim._,- y(€,t) = y/(1)
uniformly in any closed subinterval of [0, T).

This important theorem may be difficult to implement
for two reasons:

(a) the stability analysis of nonlinear systems is typically
difficult;

(b) when the equation 0 = g[x,, ¢(x,)] admits several
roots, the relevant one has to be identified.

Concerning point (b), three different main approaches
have been proposed for solving the boundary-layer
problem:

(a) expansion in the small parameter €,
(b) matched asymptotic expansion,

(c) the use of both the singular perturbation technique
and reciprocal transformation.



