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PREFACE

Recently there has been a huge interest in the development of computational method-
ologies for modeling and simulating biological processes. The book facilitates the
design of effective and efficient techniques by introducing key elements of the emerg-
ing field of computational systems biology. It gives an in-depth description of core
subjects including biological network modeling, analysis, and inference. It presents
a measured introduction to foundational topics such as genomics and describes state-
of-the-art software tools.

The collaborations between experts from highly diverse areas ranging from biology
to computer science are crucial for the progress in computational systems biology.
The book is aimed at fostering close collaborations between biologists, chemists,
physicists, mathematicians and computer scientists by providing ground-breaking
research. It provides an inspiration and basis for the future development and appli-
cations of novel computational and mathematical methods to solving complex and
unsolved problems in biology.

The book is intended for researchers and scientists from the fields of biology, chem-
istry, mathematics, physics, and computer science who are interested in computational
systems biology or focused on developing, refining, and applying computational and
mathematical approaches to solving biological problems. It is organized in a way so
that the experts from the industry such as biotechnology and pharmaceutical compa-
nies will find it very useful and simulating. The book is accessible to students and
provides knowledge that he/she requires.

We wish to thank Wiley for the support and help in the processing of the book. We
would also like to thank Yanqging Zhang, Bart Bijnens, Antti Honkela, Zhongming
Zhao, Nicos Angelopoulos, Roman Rosipal, Jae-Hyung Lee, Zhaolei Zhang, Ying
Liu, Wenyuan Li, Dong Xu, Giovani Gomez Estrada, Li Liao, Leming Zhou, and
Etienne Birmele for their help in the reviewing process.

H. M. LopHi AND S. H. MUGGLETON

Feburary, 2009
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ADVANCES
IN COMPUTATIONAL
SYSTEMS BIOLOGY

Huma M. Lodhi
Department of Computing, Imperial College London, London, SW7 2AZ, UK

1.1 INTRODUCTION

Computational systems biology, a rapidly evolving field, is at the interface of com-
puter science, mathematics, physics, and biology. It endeavors to study, analyze, and
understand complex biological systems by taking a coordinated integrated systems
view using computational methodologies. From the middle of the twentieth century
till present, we have been witnessing breakthrough discoveries in biology that range
from molecular structure of deoxyribonucleic acid (DNA) to the generation of the se-
quence of the euchromatic portion of the human genome. There have also been recent
advances in sophisticated computational methodologies, high-throughput biotech-
nologies, and computational power. The stunning developments in diverse disciplines
such as biology and computer science are playing a key role in the fast progression of
the emerging field. Computational systems biology provides a point of convergence
for genomics, proteomics, metabolomics, and computational modeling. It is charac-
terized by its focus on experimental data, computational techniques, and hypotheses
testing [1-3].

Open and unsolved problems in biology range from understanding structure and
dynamics of biological systems to prediction and inference in the complex systems.

Elements of Computational Systems Biology Edited by Huma M. Lodhi and Stephen H. Muggleton
Copyright © 2010 John Wiley & Sons, Inc.



4 ADVANCES IN COMPUTATIONAL SYSTEMS BIOLOGY

In the postgenomic era, systems-based approaches may provide a solution to such
unsolved problems. It is believed that some answer to the question “what is life” may
be obtained by taking a broader, integrated view of biology [4]. However, applica-
tions of systems-based techniques to biology are not new. Such methods and frame-
works have been applied to analyze biological processes since early twentieth century
[5, 6]. Norbert Wiener’s groundbreaking work [7] is a well-known example of these
applications.

The purpose and objective of this chapter is to review cutting-edge and long-
ranging research in the field of computational systems biology in the recent years.
However, the review is not meant to be exhaustive. We briefly describe novel method-
ologies to build multiscale biological models in Section 1.2. In Section 1.3, we present
an overview of the applications of proteomics techniques to study biological pro-
cesses. We then summarize computational systems biology methods to examine and
understand aging in Section 1.4. Section 1.5 describes systems-based techniques for
drug design, where such methods are revolutionizing the process of drug discovery.
Efficient software tools and infrastructure are crucial to solving complex biological
problems. In Section 1.6, we review tools for systems biology.

1.2 MULTISCALE COMPUTATIONAL MODELING

In the postgenomic era, researchers seek to focus their attention to studying and
analyzing biological networks and pathways by the use of multiscale computational
modeling techniques. A model can be viewed as a representation of a biological
system, where the representation can comprise a set of differential equations [8], a set
of first-order logic clauses [9], and so on. Biological models that incorporate multiple
scales such as time and space or multiple timescales may be viewed as multiscale
models [10]. Chapter 2 gives an in-depth account of mathematical and computational
models in systems biology.

Development of efficient and effective computational methodologies to perform
modeling, simulation, and analysis of complex biological processes is a challenging
task. Traditionally, mathematical and computational models have been developed by
considering a single scale. However, it is now feasible to incorporate multiple scales
in the process of model building due to recent advances in computational power and
technology. Generally, multiscale models are constructed by using sophisticated tech-
niques including numerical methods and integration approaches. Multiscale model
of the heart [11, 12] is a well-known example of an application of these modeling
techniques.

Multiscale computational modeling and simulation methods are showing
promising results in the field of oncology. The development of three-dimensional
multiscale brain tumor model by Zhang et al. [13] is an attempt in this direction.
The dynamics of tumor growth were simulated by using an agent-based multiscale
model where microscopic scale, macroscopic scale, and molecular scale were incor-
porated in the in silico model. In micro-macroscopic environment, a virtual brain
tissue block was represented by points in three-dimensional lattice. The lattice was
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divided into four cubes that illustrated the behavior of chemotactically acting tumor
cells. The chemotaxis distribution of transforming growth factor alpha (TGFa), glu-
cose, and oxygen tension were illustrated in a set of mathematical equations. It was
observed that the amount of TGFa and glucose was chemoattractant, and diffu-
sion of glucose occurred at a constant rate. In order to incorporate molecular scale,
epidermal growth factor receptor (EGFR) gene—protein interaction network model
[14] was used in conjunction with cell cycle module. The authors used a simplified
EGFR network that comprised of EGFR and TGFa genes. The mathematical model
of EGFR gene—protein network was represented as a set of differential equations.
The authors utilized the cell cycle model presented in Tyson and Novak [15] and
Alacron et al. [16]. The implementation of the software systems was carried out
by combining in-house code with an agent-based software tool, namely, MASON
(http://cs.gmu.edu/ eclab/projects/mason/). In order to study and ana-
lyze tumor growth and spread, 10 simulations were performed. The results demon-
strated an increase in tumor volume with respect to time, where the relationship
between tumor volume and time was not linear. There was a sharp increase in volume
growth at later time intervals. The study found that migrating and proliferating cells
exhibited a dynamic behavior with respect to time. Furthermore, the cells caused spa-
tiotemporal tumor growth. The results showed that the number of migrating cells was
greater than the number of proliferating cells over time, where the high concentration
of phospholipase C gamma (PLCy) might be the key factor behind the phenomenon.
In summary, the study demonstrated a successful construction of multiscale computa-
tional model of the complex multifaceted biological process. However, the approach
is not free from shortcomings as described below:

e A simple EGFR network was used.
¢ Clonal heterogeneity within tumor was not examined.

It has been found that the distribution of tumor cells is not homogeneous, and the
cells exhibit heterogeneous patterns. Techniques that account for clonal heterogene-
ity of tumor cell populations can be vital to analyze and study the development of
cancerous diseases. Furthermore, clonal heterogeneity can strongly impact the design
of effective therapeutic strategies. Therefore, many studies examined heterogeneity
in tumors [17, 18]. Zhang et al. [19] extended their multiscale computational mod-
eling technique [13] to investigate the clonal heterogeneity by incorporating genetic
instability. The extended model included doubling time of cell and cell cycle. Other
parameters such as cell—cell adhesion were also considered so that the strength of
the chemoattractants’ (TGFao, oxygen tension, and glucose) impact on cancer cells
adhesion and rate of cell migration could be investigated. The authors used Shannon’s
entropy for the quantification of tumor heterogeneity. Shannon entropy in this context
can be calculated as follows: Let ¢; denote the occurrence of clone i in the tumor,
the entropy is given by 3", ¢; In(c;), where the higher values of Shannon’s entropy
represent more clonal heterogeneity.

The results of the study showed an increase in tumor total volume over time, where
the tumor was categorized into three regions on the basis of the distance between it
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and the nutrient source. It was observed that there was a general increase in the values
of Shannon’s entropy for all the three regions. However, there was highest clonal
heterogeneity in the region closest to the nutrient source at early time stages where
the region exhibited a homogeneous pattern at later stages. The study inferred that
cancer could spread faster due to clonal heterogeneity as compared to homogeneous
cell populations in tumor.

The complexity of the mechanisms of development and morphogenesis establishes
a need to design effective and efficient computational techniques to investigate and
analyze the biological process. In a recent study, Robertson et al. [20] presented a
multiscale computational framework to investigate morphogenesis mechanisms in
Xenopus laevis. Mammalian cells share similarities with X. laevis in terms of signal-
ing network and cell behavior. A multiscale model was constructed by integrating
an intercellular signaling pathway model with the multicellular model of mesendo-
derm migration. The authors implemented Wnt/B-catenin signaling pathway model
that was presented by Lee et al. [21], whereas an agent-based approach was applied
to build mesendoderm migration model. In order to simulate mesendoderm cells’
migration, it was viewed that each cell comprised of nine sections, where each sec-
tion was modeled as an agent. Mesendoderm migration was facilitated by the use of
fibronectin extracellular matrix substrate. The study found that fibronectin gradient
was a key factor behind the cellular movement. It was also observed that polar-
ity signals [22] might be important for mesendoderm migration and morphogene-
sis. The simulations also demonstrated the importance to keep the cadherin binding
strength in balance with the integrin binding strength. Although the study estab-
lishes the efficacy of multiscale computational methodologies to studying morpho-
genesis, the proposed approach may not be computationally attractive for large-scale
simulations.

Physiome project [12] is well known for the development of multiscale mod-
eling infrastructures. Given that standard modeling languages are useful for
sharing biological data and models, three markup languages, namely, CellML
(http://www.cellml.org/), FieldML, and ModelML, have been developed in
the project. CellML [23] is characterized by its ability to capture three-dimensional
information regarding cellular structures. It can also incorporate mathematical knowl-
edge and metadata. FieldML, a related language, is known for its incorporation of
spatial information. The third systems biology modeling language, namely, Mod-
elML, is characterized by its ability to encode physical equations that illustrate com-
plex biological processes. The efficacy of the languages was established by building
multiscale heart models [12].

It has been found that same input, to constituent parts of a system, can produce
different outputs. Such variations may be produced by factors including alterations
in the concentration of system’s components. It is desirable to design techniques and
methods that can provide robustness to variations. Shinar et al. [24] presented a robust
method by exploiting molecular details. The authors coined the term “input—output
relation” for the association between input signal strength and output. The study
investigated the input—output relation in bacterial signaling systems.
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1.3 PROTEOMICS

Proteomics, the study of proteins, is viewed crucial to analyze and understand biolog-
ical systems, as protein is the building block of life. Mass spectrometry (for details see
Chapter 17) is a well-known proteomics technology that is showing a huge impact on
the development of the field of computational systems biology. Several recent stud-
ies have identified the significant role of proteomics techniques in solving complex
biological problems [25-27].

Proteomics methods and data can be useful for the reconstruction of biological
networks. Recently, Rho et al. [28] presented a computational framework to recon-
struct biological networks. The framework is based on the use of proteomics data and
technologies to build and analyze computational models of biological networks. It is
termed as integrative proteomic data analysis pipeline (IPDAP). IPDAP incorporates
a number of network modeling and analysis tools. The component tools of IPDAP can
be applied to reconstruct biological networks by fusing different types of proteomics
data. The successful application of IPDAP to different cellular and tissue systems
demonstrated the efficacy and functionality of the framework.

In another study, Zhao et al. [29] investigated signal transduction by applying
techniques from optimization theory and exploiting proteomics and genomics data.
They formulated the network identification problem as an integer linear programm-
ing problem. The proteomics (protein—protein interaction) data were represented as
weighted undirected graph, where the nodes and the edges represented proteins and
interaction between pair of proteins, respectively. The results of the study confirmed
the efficacy of the approach in searching optimal signal transduction networks from
the data.

Cell cycle comprises a series of ordered events by which cell replication and
division take place. Studying cell cycle regulation provides useful insights in cancer
growth and spread. The relationship between cell cycle and cancer has been a focus
of many studies [30, 31]. In Sigal et al. [32], a proteomics approach was applied to
investigate cell cycle mechanisms. The approach is based on the use of time-lapse
microscopy to study protein dynamics. The study identified cell cycle-dependent
changes in protein localization, where 40 percent of the investigated nuclear proteins
demonstrated cell cycle dependence. Another challenging problem is to find patterns
of polarized growth in cells where such growth is viewed as an important process
in organisms. In order to investigate the biological problem, Narayanaswamy et al.
[33] conducted a study by using budding yeast as the model system. The proposed
computational method is based on the use of microarray image analysis and a machine
learning technique, namely, naive Bayes algorithm. The study found 74 localized
proteins including previously uncharacterized proteins and observed novel patterns
of cell polarization in budding yeast.

In arecent study [34], acomputational technique is presented for predicting peptide
retention times. The method is at the intersection of two machine learning approaches,
namely, neural networks and genetic algorithms. In order to predict the retention times,
an artificial neural network is trained and the predicted values are further optimized
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by using a genetic algorithm. The method was successfully applied to Arabidopsis
proteomics data.

1.4 COMPUTATIONAL SYSTEMS BIOLOGY AND AGING

Aging is a complex phenomenon that has not been well understood. In aging, we
witness gradual diminishing/decreasing functions at different levels, including or-
gans and tissues. Cell division has been viewed as a key process in aging since long
[35, 36]. Recently, de Magalhaes and Faragher [37] have elucidated that aging might
be affected by variations in cell division. Hazard rates and nutrition may be the key
factors that influence the longevity of cellular organisms [38]. There are a number of
theories that describe how aging occurs. Kirkwood [38] listed five different theories
that are as follows:

e Somatic mutation theory

Telomere loss theory

Mitochondrial theory

Altered proteins and waste accumulation theory

Network theory

Aging has been extensively studied in Caenorhabditis elegans (nematode), mice,
humans, and fruit flies. A number of genes that extend organisms’ life span have been
discovered. Several studies on aging found that genetic mutations could increase
longevity [39-41]. Furthermore, aging genes with their associated pathways may
influence the variations in aging between different species but may not have any
affect on the differences in aging within a particular specie [42]. Gene expression
and pathway analysis can provide useful means to identify aging-related similarities
and differences between various species [43], where the efficacy of DNA microarray
technology, in studying aging, is significant [44]. In a recent study on aging, DNA
microarray experiments were utilized to show that aging in C. elegans is influenced
by GATA transcriptional circuit [45].

Advances in computational systems biology have led to the development of tools
and methods for solving highly complex problem of aging. For example, Xue et al. [46]
addressed the key issue regarding aging by applying an analytic method to human/fruit
fly protein—protein interaction network, namely, NP analysis [47]. The method is based
on the identification of active modules in network, where the chosen module com-
prised of protein—protein interaction subnetwork between genes that show (positive
or negative) correlation during aging. The application of the method to human brain
aging identified four modules. Among these modules, the two showed transcription-
ally anticorrelation with each other. The other two modules comprised of immunity
genes and translational genes, respectively. In order to study correlation between genes
in other species during aging, the method was applied to fruit fly interactome. The
results of the study showed that in addition to two transcriptionally anticorrelated



