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Preface

The aim of this book is to introduce the reader to the fascinating world
of convex polytopes. The book developed from a course that I taught at
the Technische Universitat Berlin, as a part of the Graduierten-Kolleg “Al-
gorithmische Diskrete Mathematik.” I have tried to preserve some of the
flavor of lecture notes, and I have made absolutely no effort to hide my
enthusiasm for the mathematics presented, hoping that this will be enough
of an excuse for being “informal” at times.

There is no P2C2E in this book.*

Each of the ten lectures (or chapters, if you wish) ends with extra notes
and historical comments, and with exercises of varying difficulty, among
them a number of open problems (marked with an asterisk*), which I hope
many people will find challenging. In addition, there are lots of pointers to
interesting recent work, research problems, and related material that may
sidetrack the reader or lecturer, and are intended to do so.

Although these are notes from a two-hour, one-semester course, they
have been expanded so much that they will easily support a four-hour
course. The lectures (after the basics in Lectures 0 to 3) are essentially
independent from each other. Thus, there is material for quite different two-
hour courses in this book, such as a course on “duality, oriented matroids,
and zonotopes” (Lectures 6 and 7), or one on “polytopes and polyhedral
complexes” (Lectures 4, 5 and 9), etc.

Still, T have to make a disclaimer. Current research on polytopes is very

"P2C2E = “Process too complicated to explain” [386]



vi Preface

much alive, treating a great variety of different questions and topics. There-
fore, I have made no attempt to be encyclopedic in any sense. although the
notes and references might appear to be closer to this than the text. The
main pointers to current research in the field of polytopes are the book by
Griinbaum (in its new edition [212]) and the handbook chapters by Klee
& Kleinschmidt [269] and by Bayer & Lee [50].

To illustrate that behind all of this mathematics (some of it spectacularly
beautiful) there are REAL PEOPLE, I have attempted to compile a bibliogra-
phy with REAL NAMES (i.e., including first names). In the few cases where
I couldn’t find more than initials, just assume that’s all they have (just like
T. S. Garp).

In fact, the masters of polytope theory are really nice and supportive
people, and I want to thank them for all their help and encouragement
with this project. In particular, thanks to Anders Bjorner, Therese Biedl,
Lou Billera, Jiirgen Eckhoff, Eli Goodman, Martin Henk, Richard Hotzel,
Peter Kleinschmidt, Horst Martini, Peter McMullen, Ricky Pollack, Jorg
‘Rambau, Jiirgen Richter-Gebert, Hans Scheuermann, Tom Shermer, An-
dreas Schulz, Oded Schramm, Mechthild Stoer, Bernd Sturmfels, and many
others for their encouragement, comments, hints, corrections. and refer-
ences. Thanks especially to Gil Kalai, for the possibility of presenting some
of his wonderful mathematics. In particular, in Section 3.4 we reproduce
his paper [242],

e GIL KALAI
A simple way to tell a simple polytope from its graph,
J. Combinatorial Theory Ser. A 49 (1988), 381-383;
(©1988 by Academic Press Inc.,

with kind permission of Academic Press.

My typesetting relies on IXTgX; the drawings were done with xfig. They
may not be perfect, but I hope they are clear. My goal was to have a
drawing on (nearly) every page, as I would have them on a blackboard, in
order to illustrate that this really is geometry.

Thanks to everybody at ZIB and to Martin Grotschel for their continuing
support.

Berlin, July 2, 1994
Giinter M. Ziegler
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Lecture 0

Introduction and Examples

Convex polytopes are fundamental geometric objects: to a large extent the
geometry of polytopes is just that of R? itself. (In the following, the letter
d usually denotes dimension.)

The “classic text” on convex polytopes by Branko Griinbaum [212] has
recently celebrated its twenty-fifth anniversary — and is still inspiring read-
ing. Some more recent books, concentrating on f-vector questions, are
McMullen & Shephard [335], Brendsted [114], and Yemelichev, Kovalev
& Kravtsov [482]. See also Stanley [427] and Hibi [228]. For very recent
developments. some excellent surveys are available, notably the handbook
articles by Klee & Kleinschmidt [269] and by Bayer & Lee [50]. See also
Ewald [168] for a lot of interesting material, and Croft, Falconer & Guy [135]
for more research problems.

Our aim is the following: rather than being encyclopedic, we try to
present an introduction to some basic methods and modern tools of poly-
tope theory. together with some highlights (mostly with proofs) of the
theory. The fact that we can start from scratch and soon reach some ex-
citing points is due to recent progress on several aspects of the theory that
is unique in its simplicity. For example, there are several striking papers
by Gil Kalai (see Lecture 3!) that are short, novel, and probably instant
classics. (They are also slightly embarrassing, pointing us to “obvious™ (?)
ideas that have long been overlooked.)

For these lectures we concentrate on combinatorial aspects of polytope
theory. Of course. much of our geometric intuition is derived from life in R?
(which some of us might mistake for the “real world,” with disastrous
results, as everybody should know). However, here is a serious warning:
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part of the work (and fun) consists in seeing how intuition from life in
three dimensions can lead one (i.e., everyone, but not us) astray: there are
many theorems about 3-dimensional polytopes whose analogues in higher
dimensions fail badly. Thus, one of the main tasks for polytope theory is
to develop tools to analyze and, if possible, “visualize” the geometry of
higher-dimensional polytopes. Schlegel diagrams, Gale diagrams, and the
Lawrence construction are prominent tools in this direction — tools for a
more solid analysis of what polytopes in d-space “really look like.”

Notation 0.0. We stick to some special notational conventions. They are
designed in such a way that all the expressions we write down are “clearly”
invariant under change of coordinates.

In the following R? represents the vector space of all column vectors of
length d with real entries. Similarly, (le)* denotes the dual vector space,
that is, the real vector space of all linear functions R* — IR. These are
given by the real row vectors of length d.

The symbols x, g, x1, . ..,Y, z always denote column vectors in R? (or
in R**') and represent (affine) points. Matrices X,Y, Z, ... represent sets
of column vectors; thus they are usually (d x m)- or (d x n)-matrices. The
order of the columns is not important for such a set of column vectors.

Also, we need the unit vectors e; in ]Rd, which are column vectors, and
the column vectors 0 and 1 = ). e; of all zeroes, respectively all ones.

The symbols a,ag,a1,...,b,c,... always denote row vectors in (]Rd)*,
and represent linear forms. In fact, the row vector a € (R%)* represents the
linear form ¢ = {q : R — R, & — ax. Here ax is the scalar obtained
as the matrix product of a row vector (i.e., a (1 x d)-matrix) with a column
vector (a (d x 1)-matrix). Matrices like A, A, B, ... represent a set of row
vectors; thus they are usually (n x d)- or (m x d)-matrices. Furthermore,
the order of the rows is not important.

We use 1 = (1,...,1) to denote the all-ones row vector in (R%)*, or
in (R*™")*. Thus, lla: is the sum of the coordinates of the column vector .
Similarly, O = (0, ...,0) denotes the all-zeroes row vector.

Boldface type is reserved for vectors; scalars appear as italic symbols,
such as a,b,c,d,x,y.... Thus the coordinates of a column vector x will be
T1,...,2q € R, and the coordinates of a row vector a will be ay,...,a4.

Basic objects for any discussion of geometry are points, lines, planes and
so forth, which are affine subspaces, also called flats. Among them, the
vector subspaces of R? (which contain the origin 0 € IR?) are referred to
as linear subspaces. Thus the nonempty affine subspaces are the translates
of linear subspaces.

The dimension of an affine subspace is the dimension of the corresponding
linear vector space. Affine subspaces of dimensions 0, 1, 2, and d — 1 in R?
are called points, lines, planes, and hyperplanes, respectively.

For these lectures we need no special mathematical requirements: we just
assume that the listener/reader feels (at least a little bit) at home in the
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real affine space R?, with the construction of coordinates, and with affine
maps * — Ax + xo, which represent an affine change of coordinates if A
is a nonsingular square matrix, or an arbitrary affine map in the general
case.

Most of what we do will, in fact, be invariant under any affine change
of coordinates. In particular, the precise dimension of the ambient space is
usually not really important. If we usually consider “a d-polytope in R?,”
then the reason is that this feels more concrete than any description starting
with “Let V be a finite-dimensional affine space over an ordered field,
and ....7

We take for granted the fact that affine subspaces can be described by
affine equations, as the affine image of some real vector space R¥, or as the
set of all affine combinations of a finite set of points,

F={xeR:x=X\NTo+...+ Ao for i €R, > X =1}.
i=1
That is, every affine subspace can be described both as an intersection of
affine hyperplanes, and as the affine hull of a finite point set (i.e., as the
intersection of all affine flats that contain the set). A set of n > 0 points is
affinely independent if its affine hull has dimension n — 1, that is, if every
proper subset has a smaller affine hull.

A point set K C R? is conver if with any two points z,y € K it also
contains the straight line segment [x,y] = {Az + (1 —A)y : 0 < A < 1}
between them. For example, in the drawings below the shaded set on the
right is convex, the set on the left is not. (This is one of very few nonconvex
sets in this book.)

Clearly, every intersection of convex sets is convex, and IR? itself is convex.
Thus for any K C R?, the “smallest” convex set containing K, called the
convex hull of K. can be constructed as the intersection of all convex sets
that contain K:

conv(K) := ﬂ {K' CR: KCK' K ('011vex}.

Our sketch shows a subset K of the plane (in black). and its convex hull
conv(K), a convex 7-gon (including the shaded part).

A

V/
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For any finite set {x),..., @)} C K and parameters A\j..... A > 0 with
A1 + ...+ X = 1, the convex hull conv(A) must contain the point \jx, +
...+ Apx: this can be seen by induction on k. using

A Py
MTy + ...+ A = (1“/\1\-)( ! Ty + ...+ =) LI}A;_1>+)\A,£L‘;;,
1— i 1 — Ay
for A < 1. For example, the following sketch shows the lines spanned by
four points in the plane, and the convex hull (shaded).

Geometrically, this says that with any finite subset Ky, € K the convex

hull conv(K') must also contain the projected simplex spanned by Ky. This
proves the inclusion “2” of

k

conv(K) = {Mz1+...+ @i {@1. .z CK N >0, ) Ni=1}
=1

But the right-hand side of this equation is easily seen to be convex, which

proves the equality.

Now if K = {z,...,z,} C R? is itself finite. then we see that its convex
hull is

conv(K) = {)\1:1:1+...+/\T,mn n>1, A >0, Z)‘izl}‘

t==l

The following gives two different versions of the definition of a polytope.
(We follow Griinbaum and speak of polytopes without including the word
“convex”: we do not consider nonconvex polytopes in this book.) The two
versions are mathematically — but not algorithmically — equivalent. The
proof of equivalence between the two concepts is nontrivial. and will occupy
us in Lecture 1.

Definition 0.1. A V-polytope is the convex hull of a finite set of points
in some R%.

An H-polyhedron is an intersection of finitely many closed halfspaces in
some RY. An H-polytope is an H-polyhedron that is bounded in the sense
that it does not contain a ray {x +ty : t > 0} for any y # 0. (This
definition of “bounded” has the advantage over others that it does not rely
on a metric or scalar product, and that it is obviously invariant under affine
change of coordinates.)



Lecture 0: Introduction and Examples 5

A polytope is a point set P C R? which can be presented either as a
V-polytope or as an ‘H-polvtope.

The dimension of a polvtope is the dimension of its affine hull.

A d-polytope is a polvtope of dimension d in some R® (e > d).

Two polytopes P € RY and Q C R¢ are affinely isomorphic, denoted
by P = Q. if there is an affine map f : RY — IR® that is a bijection
between the points of the two polvtopes. (Note that such a map need not
be injective or surjective on the “ambient spaces.”)

Our sketches try to illustrate the two concepts: the left figure shows a
pentagon constructed as a V-polytope as the convex hull of five points; the
right figure shows the same pentagon as an H-polytope, constructed by
intersecting five lightly shaded halfspaces (bounded by the five fat lines).

Usually we assume (without loss of generality) that the polytopes we
study are full-dimensional. so that d denotes both the dimension of the
polytope we are studving. and the dimension of the ambient space R%.

The emphasis of these lectures is on combinatorial properties of the faces
of polytopes: the intersections with hyperplanes for which the polytope is
entirely contained in one of the two halfspaces determined by the hyper-
plane. We will give precise definitions and characterizations of faces of
polytopes in the next two lectures. For the moment, we rely on intuition
from “life in low dimensions™: using the fact that we know quite well what
a 2- or 3-polytope “looks like.” We consider the polytope itself as a trivial
face; all other faces are called proper faces. Also the empty set is a face for
cvery polytope. Less trivially. one has as faces the vertices of the polytope,
which are single points. the edges. which are 1-dimensional line segments,
and the facets. i.e.. the maximal proper faces. whose dimension is one less
than that of the polvtope itself.

We define two polytopes 7. Q to be combinatorially equivalent (and de-
note this by P ~ Q) if there is a bijection between their faces that preserves
the inclusion relation. This is the obvious. nonmetric concept of equiva-
lence that only considers the combinatorial structure of a polytope; see
Section 2.2 for a thorough discussion.

Example 0.2. Zero-dimensional polytopes are points. one-dimensional
polytopes are line segments. Thus any two 0-polytopes are affinely iso-
morphic. as are any two 1-polytopes.
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Two-dimensional polytopes are called polygons. A polygon with n ver-
tices is called an n-gon. Convexity here requires that the interior angles (at
the vertices) are all smaller than 7. The following drawing shows a convex
6-gon, or hexagon.

Two 2-polytopes are combinatorially equivalent if and only if they have
the same number of vertices. Therefore, we can use the term “the convex
n-gon” for the combinatorial equivalence class of a convex 2-polytope with
exactly n vertices. There is, in fact, a nice representative for this class: the
regular n-gon,

P3(n) := conv {(cos(22k) sin(2ZE)): 0 <k <n} C R2.
The following drawing shows the regular hexagon P»(6) in R?. It is com-
binatorially equivalent, but not affinely isomorphic, to the hexagon drawn

above.
Y

Example 0.3. The tetrahedron is a familiar geometric object (a 3-dimen-
sional polytope) in IR®:

Similarly, its d-dimensional generalization forms the first (and simplest)
infinite family of higher-dimensional polytopes we want to consider. We
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define a d-simplex as the convex hull of any d + 1 affinely independent
points in some R" (n > d).

Thus a d-simplex is a polytope of dimension d with d + 1 vertices. Nat-
urally the various possible notations for the d-simplex lead to confusion,
in particular since various authors of books and papers have their own, in-
consistent ideas about whether a lower index denotes dimension or number
of vertices. In the following, we consistently use lower indices to denote

dimension of a polytope (which should account for our awkward P (n) for
an n-gon... ).

It is easy to see that any two d-simplices are affinely isomorphic. However,
it is often convenient to specify a canonical model. For the d-simplex, we
use the standard d-simplex Ay with d + 1 vertices in R4,

Ay = {:EERd+1:]lm:1, xiZO} = conv{e;,... €441}

Our figures illustrate the construction of Ay in R®:

@

Example 0.4. The three-dimensional cube C3 and the octahedron C3® are
familiar objects as well:

Their genecralization to d dimensions is straightforward. We arrive at the
d-dimensional hypercube (or the d-cube, for short):

Cy = {zeR": -1 <z <1} = conv{{+1,—-1}"},
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and the d-dimensional crosspolytope:

C,A = {x e R : Z |z:| <1} = conv{e;,—ey...., €d. —€q}.

We have chosen our “standard models” in such a way that they are
symmetric with respect to the origin. In this version there is a very close
connection between the two polytopes Cy and Cy;2: they satisfy

1%

Cy {ac (RY) :ax<1foralleeCy }
Ca = {a€e(RY :ax<1foral ze >},

that is, these two polytopes are polar to each other (see Section 2.3).

Now it is easy to see that the d-dimensional crosspolytope is a simplicial
polytope, all of whose proper faces are simplices, that is, every facet has
the minimal number of d vertices. Similarly, the d-dimensional hypercube
is a simple polytope: every vertex is contained in the minimal nuniber of
only d facets.

These two classes, simple and simplicial polytopes, are very important. In
fact, the convex hull of any set of points that are in general position in IR%
is a simplicial polytope. Similarly, if we consider any set of inequalities
in R? that are generic (i.e., they define hyperplanes in general position)
and whose intersection is bounded, then this defines a simple polytope.
Finally the two concepts are linked by polarity: if P and P® are polar,
then one is simple if and only if the other one is simplicial.

(The terms “general position” and “generic” are best handled with some
amount of flexibility — you supply a precise definition only when it becomes
clear how much “general position” or “genericity” is really needed. One can
even speak of “sufficiently general position”! For our purposes, it is usually
sufficient to require the following: a set of n > d points in R? is in general
position if no d of them lie on a common affine hyperplane. Similarly. a set
of n > d inequalities is generic if no point satisfies more than d of them
with equality. More about this in Section 3.1.)

Here is one more aspect that makes the d-cubes and d-crosspolytopes
remarkable: they are regular polytopes — polytopes with maximal symme-
try. (We will not give a precise definition here.) There is an extensive and
very beautiful theory of regular polytopes, which includes a complete clas-
sification of all regular and semi-regular polytopes in all dimensions. A lot
can be learned from the combinatorics and the geometry of these highly
regular configurations (“wayside shrines at which one should worship on
the way to higher things,” according to Peter McMullen).

At home (so to speak) in 3-space, the classification of regular polytopes
vields the well-known five platonic solids: the tetrahedron, cube and oc-
tahedron, dodecahedron and icosahedron. We do not include here a draw-
ing of the icosahedron or the dodecahedron, but we refer the reader to
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Griinbaum'’s article [217] for an amusing account of how difficult it is to
get a correct drawing (and a “How to” as well).

The classic account of regular polytopes is Coxeter’s book [140]; see also
Martini [317, 318], Blind & Blind [89], and McMullen & Schulte [336] for
recent progress. The topic is interesting not only for “aesthetic” reasons,
but also because of its close relationship to other parts of mathematics,
such as crystallography (see Senechal [406]), the theory of finite reflection
groups (“Coxeter groups,” see Grove & Benson [209] or Humphreys [236]),
and root systems and buildings (see Brown [116]), among others.

Example 0.5. There are a few simple but very useful recycling operations
that produce “new polytopes from old ones.”

If P is a d-polytope and xq is a point outside the affine hull of P (for
this we embed P into IR™ for some n > d). then the convex hull

pyr(P) = conv(P U {xy})

is a (d + 1)-dimensional polytope called the pyramid over P. Clearly the
affine and combinatorial type of pyr(P) does not depend on the particular
choice of £y — just change the coordinate system. The faces of pyr(P) are
the faces of P itself, and all the pyramids over faces of P.

Especially familiar examples of pyramids are the simplices (the pyra-
mid over Ay is Ag41), and the Egyptian pyramid Pyrs = pyr(P2(4)): the
pyramid over a square.

Similarly we construct the bipyramid bipyr(P) by choosing two points x;
and z_ outside aff(P) such that an interior point of the segment [z, x|
is an interior point of P. As examples, we get the bipyramid over a triangle

L+

Tr_

and the crosspolytopes, which are iterated bipyramids over a point,
. A A
bipyr(Cy™) = Casa

Especially important, it is quite obvious how to define the product of two
(or more) polytopes: for this we consider polytopes P € IR” and Q C IRY,



