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Preface

As noted in the title, this book includes analytic geometry as well as
calculus. The analytic geometry is continued in chapters that are
separate from the calculus and is presented from time to time as
needed in the development of the calculus. This is done so that the
book may be used either as a text for a combined course in calculus
and analytic geometry, or as a text for calculus alone. We give
somewhat more analytic geometry than do most of the recent books
on the combined subjects, but less than is given in books on analytic
geometry. Differential and integral calculus of polynomials is pre-
sented along with the needed analytic geometry before any work on
transcendental functions is given.

Considerable effort has been expended to make the book teach-
able. The work tends toward the traditional, but we have not lost
sight of recent trends and have used modern terminology and con-
cepts when they seemed appropriate. We hope that any lack of
sophistication is offset by the readability of the book from the student’s
point of view. Besides believing that the student can understand the
book, we anticipate that he can apply the principles that are presented.

We have seriously attempted to include sufficient worked-out ex-
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amples to illustrate the text material they follow and the problems
they precede. We hope that the discussions in connection with the
examples are such that the student will understand and become inter-
ested in them.

Exercises have been placed a lesson apart, for ease of assignment
each day. Many of the concepts and techniques are of such a nature
that more than one day is required for their mastery. We think that
enough problems have been included for this purpose. There are
about 3,700 problems in 116 exercises, so that more than one day can
be spent on a considerable number of them. The problems are in
groups of four of about the same order of difficulty and requiring
essentially the same concepts and techniques; the order of difficulty
increases from group to group. With this arrangement a good assign-
ment could consist of each fourth problem in an exercise.

We wish to express our appreciation to CUPM and to many of our
colleagues whose recommendations we have considered in deciding
what topics to include and in deciding how to treat them. But in the
final analysis, the selection of topics and method of treatment are ours
and have been determined in the light of our years of teaching
collegiate mathematics.

Paul K. Rees
Fred W. Sparks
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1.1 Sets

One of the basic and useful concepts of mathematics is denoted by
the word “set.” A set is a collection of well-defined objects or symbols
called elements or members of the set. By “well defined” we mean
that there is a criterion that enables us to decide whether an object
or symbol is or is not a member of the set. For example, suppose that
S is the set of all bicycles that are green. We can conclude: first,
a green bicycle is an element of S; second, a tricycle is not an element
of S; third, a bicycle that is not green is not a member of S.

As implied above, capital letters are frequently employed to
designate sets. Lowercase letters and numbers are often used to
designate the elements of a set. A set is also denoted by enclosing the
elements in braces { }. For example, if A = {a, b, ¢, d}, then A is a
set whose elements are a, b, ¢, and d. Furthermore, the notation
B ={1,2,3,...,99} means that B is the set of natural numbers, or
the numbers used in counting, that are less than 100. Note that the
three dots between 3 and 99 indicate that the natural numbers
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between 3 and 99 are included in the set B. Another notation for a
set that is frequently employed is illustrated by the following:

A = {x| x is an even natural number less than 5}

The vertical bar is read “‘such that.” It follows at once that A = {2, 4}.
This is often referred to as set-building notation.

The notation @ € A means that a is an element of the set A and is
sometimes read “a belongs to A.”

If each element of the set A is a member of the set B, then A is a
subset of B, and we write A C B. If the set B contains at least one
element that is not a member of A, then A is a proper subset of B,
and this situation is indicated by A C B. For example, if
A ={a,b,c,d} and B = {a, b,c,d, e, f} then A C B. If, however,
B = {a,b,c,d}, then A C B.

Two sets A and B are identical if and only if each is a subset of the
other. For example, the sets A = {1,2,3,4} and B = {4,2, 3,1}
are identical. This situation is indicated by writing A = B.

A set that contains no elements is called the empty or null set and
is indicated by the symbol &.

{x | x is a woman who has been president of the United States} = &
{x | x is a two-digit natural number less than 10} = &

It frequently happens that the same set of elements belongs to
each of two sets A and B. This set is called the intersection of A and B
and is designated by A N B. More precisely we define the intersection
below.

The intersection of two sets, A N B, is the set {x | x € A andx € B}.

For example, if A = {x|x is a natural number less than 10} and
B = {x|x is a natural number divisible by 2}, then A N B =
{2,4,86,8}.

Obviously if two sets have no elements in common, their intersection
is the null set @. For example, since no former governor of Texas has
been a governor of California, then {x|x is a former governor of
Texas} N {x | x is a former governor of California} = &.

Two sets A and B are disjointif A N B = &.

The concept of the intersection of sets can be extended to three or
more sets. For example

ANBNC={x|xcAandx € Bandx € C}

The union of two sets is denoted by A U B and is defined to be
the set of elements that belong to A or to B or to both A and B.
In the symbolism of sets,



universal
set

1.1 Sets 3

AUB={x|x€Aorx¢€ B}
Similarly,
AUBUC={x|x€AorxcBorx¢€ C}

For example, if A = {1,3,5}, B={2,3,6}, and C = {4,5,7, 9},
thenA U B={1,2,3,5,6}andA UBU C={1,2,3,4,5,6,7,9}.

The totality of elements that are involved in any specific situation
or discussion is called the universal set and is designated by U. For
example, each of the various clubs, athletic teams, academic classes,
and any other group whose members are students at a given college
are subsets of the universal set composed of the entire student body
of the college.

A method for picturing sets and certain relations between them was
devised by an Englishman, John Venn (1834-1923). The fundamental
idea is to represent a set by a simple plane figure. In order to illustrate
the method, we shall use circles. We shall represent the universal set
U by a circle C and shall define U to be the set of all points within
and on the circumference of C. We shall represent the various subsets
of U by circles wholly within the circle C. Figure 1.1 illustrates the
device.

The shaded area is A\U B The shaded area is AN B
(a) (b) (c)
The shaded areais ANBN C ANB=4¢

(d) (e)

Figure 1.1 Venn diagram
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Figure 1.2 Number line

1.2 Real numbers

In elementary calculus we use the real number system almost
exclusively. This system is defined in college algebra, and the numbers
are interpreted by use of the number line such as line L shown in
Fig. 1.2. In this figure the unit length u is laid off successively to the
right and to the left of the point O on L. The positive integers
1,2, 3,4,5,6,. .. are associated with the successive right extremities
of the intervals to the right of O and the negative integers —1, —2,
—3, —4, —5, —6, ... are associated with the left extremities of the
intervals to the left of O. In order to obtain the point associated with
%, we divide the interval from O to 1 into 5 equal parts and then
associate % with the right extremity of the third of these subintervals.
We say that 3 is the quotient of 3 and 5 and call it a rational number.

If we construct the right triangle ORS as indicated in the figure,
the length of the line segment OS is /32 + 32 = /18. Hence the
point Sis associated with 1/18. Furthermore, 1/18 cannot be expressed
as the quotient of two integers.” We can, however, obtain a decimal
representation of /18 by a repeated application of the square-root
process of arithmetic. The process never terminates and the decimal
fraction never becomes periodic. Thus we say that /18 is a non-
terminating, nonperiodic decimal fraction. We call such numbers
irrational.

Each point on the line L is associated with one and only one
number that is either an integer, a rational number, or an irrational
number. Furthermore, each number is associated with one and only
one point on the line. Since the number a is associated with only one
point on L, we shall frequently refer to the number a as the point a.

As indicated in Fig. 1.3, we define the sum a + b as the number
associated with the point on L that is a distance of b to the right of
the point a, and the sum a + (—b) as the number associated with the
point that is a distance of b to the left of a. It can be verified that the
point a + b is the same as b + a. We shall assume that this is true

® For proof of this statement see Rees and Sparks, College Algebra, 5th ed., McGraw-Hill
Book Company, New York, 1967.
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b

a+(=b) O a b a+b
Figure 1.3 Sum of two numbers

for any two numbers; thus we have the axiom
a+b=b+a (1)

The positive numbers are the numbers associated with the points
to the right of O on L, and the negative numbers are those associated
with the points to the left of O.

We say that a > b if the point a is to the right of the point b on L
and that ¢ < d if the point c is to the left of the point d.

By the above interpretation the point associated with the sum
a + (—a) is the point O. Furthermore the point O + a is the point a.
Heretofore, we have not called O a number, but have used the symbol
to designate the reference point on L. We now define the number
zero to be the number such that

Zero +a=a (2)

and shall designate it with the symbol 0. It is consistent with the
above reasoning to assign the number zero to the point O.

We shall now define the negative of the number a to be the
number —a such that

a+(—a)=0 3)

As implied by the above discussion, the positive integers are the
natural numbers, or the numbers used in counting. The negative
integers are the negatives of the natural numbers, and 0 is the
number such that 0 + a = a. We are now in a position to define the
set of integers I as follows:

I = {p|p is a natural number} U {0} U {n|n is the negative
of a natural number}

A rational number is a number that can be expressed as the
quotient of two integers. Since the integer n = n/1, any integer is
also a rational number. Hence, if J is the set of rational numbers,
then I C J.

An irrational number is a number whose decimal representation is
a nonterminating, nonperiodic decimal. Such numbers cannot be
expressed as the quotient of two integers. We shall represent the set
of irrational numbers by K.



