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PREFACE

It is commonplace in engineering practice today in structural and solid mechanics to
utilize linear computer programs for general purpose applications in many areas ranging
from automobile problems through to aerospace and machine design, to name a few.
While vigorous research activity has persisted for more than a decade on nonlinear pheno-
mena, applications in computational and structural mechanics are occurring in a small but
growing number of real situations. Nonlinear computer program developers frequently
find themselves at the cutting edge of research as they attempt to refine their complex
software products.

We are indeed making progress in new and exciting fields such as automated manu-
facturing and robotics along with more classical disciplines of buckling, vibration, transient
response, etc.; however, new difficulties are emerging with pronounced nonlinear aspects,
be they geometrical, material-related, or otherwise. It is important to note as complex
nonlinear problems arise with greater frequency, that we are armed with much better tools
to resolve them. We might categorize the tools as software (including methods of analysis,
solution strategies and algorithms) and hardware.

As we anticipated many years ago, gains in computer hardware have taken place and
continue to do so in systems ranging from large mainframes like the Cray series through
to desktop micros that were termed mini computers but a few years ago. As a result of
the availability of incredibly cheap computing power, many more nonlinear problems are
falling within the purview of feasible solution. Rather than hardware, the emphasis in the
papers presented in this volume is on improved methods and analytical techniques for
nonlinear problems.

Organized through the auspices of the Applied Mechanics Division’s Committee on
Computing in Applied Mechanics, the Symposium from which this volume emanates is,
in a sense, a follow-up to a meeting of a decade ago organized by Dr. Richard F. Hartung
(November, 1973, Numerical Solution of Nonlinear Structural Problems).While that
particular productive symposium focused on static problems, the present one is more
general.

We thank the authors for their cooperation in preparing their \manuscripts on schedule
and also Mr. Leggitt and his staff at ASME for their help in bringing this volume out on
schedule.

Satya Atluri
Georgia Institute of Technology

Nicholas Perrone
Catholic University of America
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A POST-PROCESSING APPROACH IN THE FINITE ELEMENT METHOD

1. Babutka and A. D. Miller
University of Maryland
College Park, Maryland

ABSTRACT

In this paper we discuss a method for post-processing a finite element
solution in order to obtain high accuracy approximations for displacements,
stresses, stress intensity factors etc. Rather than take the values of thece
quantitics directly from the finite element solution, as is usually done, we
evaluate certain weighted averages of the finite element solution over the
entire region or over the boundary. These yield approximations having the same
order of accuracy as the error in the strain energy. We briefly discuss some
theoretical error estimates. To illustrate the practical effectivity of the
technique, we present some numerical examples. In discussing these examples we
shall touch upon the important practical issues of adaptive mesh selection and
a'posteriori error estimation.

1. INTRODUCTION

The finite element method has become one of the major tools in contemporary
computational mechanics. In the context of structural mechanics, the basic
theoretical results of finite element analysis relate to the convergence of the
strain energy of the error in the finite element solution. Usually, however,
one is primarily interested in the values of displacements, stresses or stress
intensity factors at some points. The question of the accuracy at a point of
the displacement or the stress of the finite element computation is difficult to
analyze in general. Nevertheless, both theory and practice show that in many
cases the accuracy in the stresses is of the same order a&s the square root of
the strain energy of the error. (The square root of the strain energy is often
called the strain energy norm, e.g. a 17 relative accuracy measured in terms of
strain energy is the same as a 10% relative accuracy measured in the strain
energy norm.) It is well known that the pointwise finite element displacements
are considerably more accurate than the corresponding stresses. In linear
fracture mechanics, it has been observed that the computation of stress intensity
factors by use of the Energy Release principle (see, for example, [1]) leads to
good results even in cases where the computed pointwise stresses and displace-
ments are inaccurate. The success is due to the fact that the accuracy of the
method is of the order of the strain energy of the error, not the strain energy
norm of the error [2]. (The various curve fitting methods used for the computa-
tion of the stress intensity factors are much less reliable.)

This experience in fracture mechanics leads, quite naturally, to the



question: Is it possible to obtain approximations for displacements, stresses
and the individual stress intensity factors K_ and K._, etc. all with an
accuracy of the same order as the strain energy of the error? In this paper we
shall show that this is indeed possible by a suitable post-processing of the
finite element solution. This entails a weighted averaging of the finite
element solution, and the loading data of the problem, over the region or its
boundary. The stiffness derivative [1] and the J-integral [3] methods of linear
fracture mechanics can be viewed as particular forms of this post-processing
procedure. In addition we shall see how adaptive finite element techniques and
a'posteriori error estimation may be employed in post-processing calculations.

We shall not go into too much detail here, but rather illustrate the funda-
mental ideas in the setting of a few simple model problems. For further details
see [2], [4], [5] and [6].

2. MODEL PROBLEM I (THE MEMBRANE PROBLEM)

Consider the simple model problem

Vs £ ia @= (~1,1) = 1,13 ,

(2.1)
w =20 on the boundary 230 of Q

which describes a square membrane, fixed at its edges and loaded with a body
force of surface density f

2.1 Extraction of displacement w(0,0)

Let (r,8) be polar coordinates centered on (0,0). Define a function

=1 -
¢ = 7 log r ¢0 s (2.2)
where ¢ is any function which satisfies ¢, = 7l log r on 8% . In partic-
ular then, ¢ = 0 on 3Q , and so an integra?ion gy parts gives
r
f v2¢w da = ? (Vp*A w — Vw-di ¢) ds + J V2w¢ dA = f fo dA (2.3)
Q aQ Q Q

by (2.1). Notice, however, that

2, 1
v (E;-log r) = 60

where § is the Dirac delta function (concentrated unit load) positioned at
the origin. Therefore, we have the alternate expression
2 2
Vo¢w dA = w(0,0) - v ¢0w dA
Q Q
Substituting this into (2.3) and rearranging gives
W= w(0,0) = f v da + f £4 dA (2.4)
Q Q

We shall call tais expression an extraction expression for w(0,0). The
function ¢ =V ¢0 will be referred to as the extraction function, and the

integral f¢ dA (which relates to (2.1) only through the known loading f )

Q
will be cilled the load term.
1f W, is a finite element approximation to w , then we may replace w in
(2.4) by w to obtain

W o= f(vz%‘?r +f¢) dA (2.5)

Q



as an approximation to W = w(0,0). Our post-processing calculation for W
will be based on (2.5).
There are many choices of ¢, , and hence ¢ , that may be employed in
(2.4) and (2.5).m For instance, if we let ¢ be the influence (Green's) function
for (2.1) then w would be exact,

we £6 dA = w(0,0)

J
Q
0f course, this is unrealist}c since we do not have easy access to the influence
function. If we set ¢0 = E;—log r , and hence ¢ = 0 , then (2.5) would give
n,
W= f sgw dA = w(0,0)
Q

and our post-processing would just return the pointwise value of W at (0,0).
As indicated in the introduction we hope to achieve higher accuracy than this.
The key is to choose ¢ to be smooth. To see why tkis should be, we shall
first obtain an estimaté& for the difference |w(0,0)—w| "

Subtracting (2.5) from (2.4) gives

A% n v
W - Wl = | J r(w-w)da| (2.6)
Q
where we have written ¢ for the extraction function V2¢O . Introduce an

auxiliary problem:

Vzw = -z 1in Q
(2.7)

U] 0 on 3R

Notice that this is of the same form as (2.1), only with a different body load-
ing. An integration by parts shows that

f £ (w-w) dA = f VyoV(w-w) dA . (2.8)
Q Q

Recall the fundamental orthogonality property of finite element theory,
Ny,
j VvV (w-w)dA = 0
Q

for any admissible finite element function v . In particular, choosing v to
be the finite element solution ¢ of (2.7), it then follows from (2.6) and (2.8)
that

lw - W[ = J V(y-1) ¢ V(u-w)dA . (2.9)
Q

This integral may be bounded to give the estimate
o a1 L ~bs LT
W - Wi < EQu-¥)7 E(w-w)? = [E@W)-EW)[? |[E@)-EW)|? . (2.10)
Here E(u) denotes the strain energy of a function u,

E(u) = f V(u)+V(u) dA
Q

In other words then, the error in the post-processed, value \% is bounded by
product of the strain energy norm of the errors in w and y , the simultaneous
finite element approximations to the solutions w and ¢ of the primary
problem (2.1) and the auwxiliary problem (2.7) respectively. We emphasize the
term simultaneous finite element approximation. It is important to realize



that in (2.9) and (2.10) the finite element solutions w and $ must be defined
using the same class of admissible finite element functions.

The estimate (2.10) hints gt how we should, at least in principle, select

If ¢. , and hence ¢ = V ¢, could be chosen so th%t/the solution ¢ of

(9 7) is smooth enough to_guarantee that E(y-y)? E(w-w) 2 or better, then we
would have lw w| . E(w-w), or better. This is the goal we set in §1 for the
accuracy of our post-processing calculations.

Let us examine (2.10) in some further detail for the particular case of
f = -1 . Suppose that we are using a quasi-uniform finite element mesh of mesh
size h and C° conforming elements of degree p . Our discussion will be
broken into two parts. Firstly, we shall work with the h-version of the finite
element method, and secondly with the p-version. (For details c¢n the h and
p-versions see [7].)
a) The h-version: This is the standard version of the finite element method.
In it convergence of the approximate solution is presumed to occur as h>0 with
p fixed.

The solution w has a mild singularity at the vertices of the square Q .
It may be shown that

- n 1
ce Y < E@-w)* < c(p)n¥ (2.11)
where p = min(éyp) , and C 1is a generic constant not depending on h . In

general we also have the pointwise estimate

[w(0,0) - w(0,0)] < c(p)h” €

where ;>= min(§3p+1) and € > 0 1is any positive number For a general smooth
¢O we have an estimate similar to (2.11) for E(y- w)

L |
E(U-p) * < c(p)h" . (2.12)
Therefore (2.10) becomes
2 ’
=il < cp)n!

and we see tha& the error in W is of the same order,as the strain energy of
thesiEror in w . Note that tor p > 2 , [w- W‘ v 0(h”) while w(0, 0)|—w(0,0|w
0(h )
Let us now be more particular in our choice of ¢, . Suppose that ¢ = V2®
vanishes in a neighborhood of the boundary 32 and Q . (This can be achieved
if we let ¢ be a smooth function which is unity near 80 and zero near (0,0),
and then set ¢O = (5;10g r)wl.) Now instead of (2.12) we have
no b

EW-0) 7 < cpn®
and consequently

-] < cEmntP o,

and we see that \w—a| has a superior asymtotic (as h>0) convergence rate than
E(w-w)

Note however that our analysis above has been asymtotic. We have said
nothing about the numerical values of the generic constant C . In any practical
post-processing using a non-zero h , these constants may dominate in the above
estimates.

b) The p-version: In the p-version of the finite element method the convergence
of the approximate solution is presumed to occur as pre with h fixed.

It may be shown that

l — -
c(e) LB B < c(e)p G
for any € > 0 . Likewise for a general smooth ¢O
L = 3=
E(-9) F< c(e)p” T, (2.13)



Therefore from (2.10)
Y —-(6-¢
[v-wl < c(e)p s A

m ~
again showing that |w-w| v E(w-w)

Again making the particular choice for ¢0 outlined in (a) above, instead
of (2.13) we have

E(p-1)Z < C()p ™

with n > 0 arbitrary. Therefore, in this case,

u -(3+n-¢€
|w-w| < c(e,n)p ( }
o
with n arbitrarily large. As in (a), we see that ]W—W| now has a
superior asymtotic (as p»«) convergence rate than E(w-w) . Once more however,
we caution that we have made no attempt to estimate the generic constants C
appearing in the above estimates.

3
2.2 Extraction of the stress component 5% (1,0)
1

Let(r,6) now be polar coordinates centered at (1,0), and define

T r
1 ] .
where ¢ is a smooth function satisfying ¢O = = O5Y on 32 . Proceeding

much as in §2.1, we obtain an extraction expressign ¥or the stress component
3
v=%(1,0)=-Jv2¢OwdA-Jf¢dA
1 Q Q

. . . . 2 A
The extraction function in this casg is ¢ = -V ¢ and the load term is R =
- /! f¢dA . We may replace w by w in the extrgction expression to obtain an

Q
approximation

<

2
= = v ¢Ow dA - fo dA (2.14)
ow Q Q "
to SQ_(I’O) . The analysis of the accuracy of the approximation V is similar

.
to the corresRonding analysis for W in §2.1. Just as we saw there, the
accuracy of V 1is closely related to the smoothness of the solution of an
auxiliary problem similar to (2.7).

3. MODEL PROBLEM II (SLIT MEMBRANE PROBLEM)

As another example, consider the problem illustrated in Figure 1. This
models a circular membrane slit along a radius. The face T of the slit is
fixed while the other face T is load free. The solution” w of this problem
is known to have an expansion about the origin of the form

_ L. 0 3/4_. 36 5/4 . 56 7/4
w klr sing- + k2r sin— + k3r sin— + O(r ) .

where (r,9) are polar coordinates centered at (0,0). The constants k. ,k, and
k, can be thought of as analogs of the stress intensity factors of liInear
fracture mechanics.

A number of extraction expressions for the km's can be derived. We shall
mention two possibilities. Firstly, define

6 = s =2 DR sin( a1y (m=1,2,3)
Then it may be shown [5]
km = f (g% - V¢ w)ds 5 (3.1)
Iy



Figure 1. Slit Membrane Problem

Notice that unlike the extraction expressions that we met in 82, (3.1) involves
an integration over part of the boundary of & .
To describe another extraction expression let us set

_ -8 (5-2m)Yy . _o 8. =
v = ;?EE:IYTE:EET T sin((5 2m)4) (m 152,:3)

Suppose that ¢ 1is any sufficiently smooth function that is near (0,0) and

vanishes on F3 . In [5] it is shown that
_ 3% _ 3¢
9x 9x
k= f O L 2l(vv) da (3.2)
Q - 9% %
ax2 awl

This extraction expression is related to the stiffness derivative [1] and J-
integral [3] methods of fracture mechanics. N

As before we may obtain an approximation to k by replacing w by w
in (3.1) or (3.2). The analysis of the accuracy of these approximations is
similar to the corresponding analysis in §2.1.

4. TWO DIMENSIONAL PROBLEMS (SEEPAGE PROBLEM)

4.1 Formulation of the problem

We shall briefly discuss the problem illustrated in Figure 2. This models
the seepage under a dam which has been fitted with a grout curtain. The math~
ematical model is based upon the following assumptions:

(i) a linear relationship (Darcy's law) between flow velocity v
and the gradient of the piezomatric head w , namely v = -kVw ,where k > 6
the permeability of the (isotropic) ground material.

(ii) the flow is incompressible, that is V-.v = 0 .

We shall restrict our attention to the slit region  (the slit models the grout

curtain). The region § is composed of two subregions Q_ and @ which
meet along an oblique interface I', . We suppose that the permeablllEy is
constant in each subregion (zone) taking the values and k in @ and

Q1 respectively. The ground surface downstream from t%e dam is Eaken asIthe



zero of piezometric head, and the value of w at the ground surface upstream
has been scaled to unity. The region  1is assumed large enough that a no out-
flow condition is valid on all the below ground boundaries. Finally, the grout
curtain and the dam base are assumed impermeable.

grout curtain

c w=| A x w=0 B
j v, =0 P
v,=0ly,=0 X
Q
Q1 N -
V=0 K=K L -———1”’ W N
I - > - v=0
Qp Q
K=Kq
v, =0
Figure 2. Model for seepage beneath an impermeable dam with a grout
curtain. [w = piezometric head; k = permeability; v = (vl,v2)=

= -kVw (Darcy's Law) ]

The governing differential equation is

2. _ .
V'w = 0 in QI and QII 5 (4.1)
with boundary conditions on 23Q as shown in Figure 2. There is also an inter-

face condition

(—ka-N)I = (—ka-N)II on FO R (4.2)

where N is a unit normal to I', , and the subscripts I, II indicate limiting
values as T is approached wighin Q ’QII respectively.

The three quantities that we shalI be interested in evaluating are:
(i) the total outflow per unit time through the downstream surface AB,

¢1 = - f klgg— ds
2
(ii) the outflow speed ®2 = —kléggg at a point on the downstream surface AB.
(iii) the piezometric head ¢3 = w at a point Q in Ql "
4.2 An extraction expression for ¢l
Suppose that ¢ 1is a smooth function which satisfies (i) ¢ = -1 on AB, and

(ii) ¢ = 0 on CD. Then an integration by parts shows

f KVweV6 dA = f KVwefi ¢ ds‘*f [(ka-&)II - (ka-ﬁ)I]¢ ds

Q EIY) 1"0
- f szw ¢ dA
QfJQII
where A is the outward pointing unit normal on 3Q . Using (4.1), (4.2) and

the boundary conditions for w on 32 , we obtain the extraction expression



o =-Jkﬂ’— ds = fka-w) di 4.3)

Notice that (4.3) is different from the extraction expressions of §2 and §3 in
that it entails the integration of the derivatives of w . It is not difficult
to see that there are many choices for the function ¢ which lead to smooth

extraction functions in (4.3).
As usual the extraction expression (4.3) suggests that we try to approximate

@l by
v n
8 = f kVw+V¢ dA
Q
where w is the finite element approximation to w .

4.3 An extraction expression for @2

If we set

¢ = % sige (r,6 polar coordinates centered at P) (4.4)
then it can be shown that
= kL) = | WsReds = (s N
o, = ~ky— (P) f kv i wds (kI ki) [ Vo+Nw ds (4.5)
aQ TO
where n is the outward pointing unit normal on 3Q . Notice that the integral

over 99 includes no contribution from AB, since w = 0 there. The extraction
function in (4.5) is smooth provided P is ''reasonably'" distant from A or B.
Based on (4.5) we have the approximation

v A Y
¢, = f kVé+fiw ds - (kI_kII) f V¢+Nw ds

2
R TO
to ¢2
4.4 An extraction expression for ¢3
Set ¢ = 7%E—(log r = ¢0) (r,6 polar coordinates centered on Q) 5
i

where ¢ is some smooth blending function which ensures that ¢ vanishes on
AB and CD. Proceeding much as in §2.1 we find

¢3 =w(Q) = f kVo+fi w ds - (kI—kII) J Vé+Nw ds - f kV2¢Ow dA . (4.6)
o FO Q
We could, for instance, use ¢,(x) = log]Q~(x ,d)| where d is the perpendic-
ular distance of x from the Iine CB. Then provided Q is "reasonably"
distant from 59 and TI',, the extraction functions appearing in (4.6) are smooth.
As usual we may use (4.6) to obtain the approximation

Y AN n, 2,

®3 = j kV¢ «fiw ds (kI—kII) f V¢ +Nw ds f kv ¢Ow dA .
N T Q

5. MODEL PROBLEM IV (EDGE CRACKED SQUARE CYLINDER)

Consider the edge cracked square cylinder whose cross section § is shown
in Figure 3 We suppose that a plane strain assumption is valid. The crack
faces and T are traction free and the non-crack boundary of the
region é %as a traction loading of g = 18 ). We assume that no body
forces act. Let w denote the dlsplacemen% véctor and suppose that (r,8)
are polar coordinates centered at A.



EEEEREE

Figure 3. Cross section of edge cracked square cylinder

In the neighborhood of A the displacement vector w can be written in
the form

15 0 1 . . 38 5 3 0 36
3 /(o1 .61 36 A 1 36
. <wl> ) Kor < (k) sing 7 sin 3 > K r < (K+5)cos§ + lcos3 >
Y2 20 (K+%)cos% + %—cos %9- Zu —(K—%)sin%-+ %sin%g
+ o2

where U is the shear modulus, «k=3-4v and v is Poisson's ratio. The constants

K_ and K are (up to a normalizing constant) the mode I and II stress
intensity factors of linear fracture mechanics. There are a number of extrac-
tion expressions that yield the stress intensity factors KI and KII . We shall

briefly describe two kinds of such Txpress}?ns.
Define the vector functions v~ and v by

-k 3
vI = v{ =5x * (—K+<5)31n2 = qsin%g
1 2u 3, 8 56 » and
_ oAy —do]
2 (K+E-)cos2 + 3C08%
T -1
vII = viI r 2 (K+%)cosg»+ ‘/zcosEg
2u
vII ) 56
2 (-k+Hs5)sins + Lsini—
2 2
Then for o = I, II it may be shown that
_ u a a
Ko = @) f (ByVy = Ly (V Impwy) ds , Gl

19}

where, for any vector function u , tkl(u) denotes the corresponding stress
tensor

2y Sus Buk Bug)
S =1y Slme, YV \Bx, (kokam = 120
s j
n = (n1,n ) 1is the outward pointing unit normal on 23Q ; § is the Kronecker
delta; ang a repeated index indicates summation. Notice that the integration



in (5.1) is in fact only over the non-crack portion of 3Q . ) .

( The second kind of extraction expression that we shall describe is related
to the Energy Release principle. Suppose that ¢ 1is any sufFlclently smooth
function on & which is unity in the vicinity of A and vanishes on BQ—(F§JFQ.

Let
I I )y 1y 8 1 30
u” =fu L [-(k-%)sing — “ssing—
1 = %— 2 2 and
u
I 6 1 36
) (K+‘/§)cos2 + }cos5
r’s 3 9 36
uiI = uil = “ﬁ’ - (k+3)cosy + %cos§~
11 3,8 ., 30
u, -(x 2)cos2 + ssing—

oW . oW, ou 3
[ —u i a i ay i ¢
= — t. - —t,. . (u) — t..(w) | ==
K =T {[Bx () ax, il ax, il ax,
o (5.2)
ow au®
i a, + i 9
e =17 <w>]—}dA
Bxl i2 Bxl i2 axz
Notice that the integration in (5.2) excludes the region arounda A in which

¢ =1 . Therefore, the singularities in the derivatives of u at A should
present no computational difficulties in any post-processing based on (5.2).

6. SOME NUMERICAL EXAMPLES

6.1 The FEARS Program

The calculations associated with the examples of this section were performed
using the FEARS program. FEARS is a research oriented, adaptive finite element
package developed at the University of Maryland. A detailed description of the
operation and mathematical background of the program can be found in [8]. For
the purposes of this paper, the following few remarks will suffice. FEARS
assumes that the region under consideration has firstly been partitioned into a
number of subregions, each of which is a curvilinear quadrilateral. Within the
program, each of these subregions is transformed by a change of coordinates into
a unit square. The actual finite element modelling is then carried out on these
transformed squares. Square bilinear elements are used. FEARS has an adaptive
character: starting from an initial coarse mesh (usually, uniform on each of the
transformed squares), the program automatically selects, in a recursive manner,

a sequence of "optimal'" mesh refinements. FEARS also calculates an a posteriori
estimate of the error in the finite element solution.

6.2 Example 1 (The Membrane Problem)

We consider the problem (2.1) with the load f = -1 . By the method of
separation of variables, an infinite series representation of w can be found.
Using this series the following exact values (accurate to 5 significant figures)
can be found:

E(w) = fle|2dA = .56231 ; W= w(0,0) = -.29469 ; V = %%—(1,0) = .67528
1
Q
Square bilinear elements were used on a uniform mesh of mesh size h. (For

this problem the transformation of Q carried out by FEARS is just a reduction
in size.) Considerations of symmetry show that we need only calculate using a

quarter segment of Q . On the basis of theogetical Eonsideratiogslwe expect to
see the following rates of convergence: E(w-w) ~ 0(h”), and E(w-w)~* ~ 0(h); and
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ow
for the pointwise valueg IW - %(0,0)I N O(hz) and [V— X (1,0)| v 0(h)
Post-processed values W and V were computed using (2.5) and (2.4) respec-
tively.
The results of the calculations are listed in Table 1. The post-proces-
sing calculations for Y (see (2.4)) were performed using

(1+x12)(l+x22)
I e E— ’

"
while for the computation of V (see (2.14) we selected

(x,-1)
1 1 1
% T o 2z 2" I
(xl—l) +x2 (xl—l) +1
- 3 - -
where X(x) = {|xl] 1< xy < 0
0 0 §>x1 <1

The various 6 ratios mentioned in the table are the ratios of the appropriate
FEARS a posteriori error estimates to the corresponding true errors. For
instance, for theNcalculation of W with the coarsest mesh, the FEARS estimate

of the error in W was 1.07 times the true error in
Let us make a few comments about the results in Table 1. From the first

section of the table it is seen that the energy norm of the error appears to
converge at,a rate of O0(h) , which means that energy of the error is converg-
ing as ,0(h"). Notice, both the pointwise value w(0,0) and Ehe post-processed

value W for the displacement W appear to converge as O0(h") . This is as
theory would predict since we use bilinear elements. (See the discussion in
§2.1). Nonetheless, is about twice as accurate as %(0,0). The case of

the strgss component V 1is however markedly different. The post~p{ocessed
value V is considerably more accurate than the pointwise value 3w (1,0).

Bxl

The rate of convergence of % is O(hz), while that of the pointwise value is
around O0(h). The table confirms that indeed the post-processed values for both
displacement and stress are converging at the same rate as the strain energy

of the error.

6.3 Example 2 (The Split Membrane Problem)

For our second numerical example we consider the problem dealt with in §3
with loading g = x, . For thisproblem also we can obtain a series solution
which can be manipu%ated to give the following exact values (accurate to 5 sig-
nificant figures): E(w) = 4.5271 ; k., = -1.3581 ; k, = .97009 ; and k., = 45271,

Since the solution of this probléem has a severezsingularity at (050) we do
not expect uniform meshes to yield accurate finite element solutions. When
FEARS computed whis problem it was directed to produce mesh refinements that
were "optimal" in a strain energy error sense. As expected, the sequence of
meshes produced exhibits a quite severe refinement around the tip of the slit.
Two sets of post-processing calculations were carried out for the km's
Firstly wusing the extraction expression (3.1), and secondly employing (3.2)
with

1 0

1
>

| A
-
A

1-4(r-%) 2 15

| A

r 1

| A

The results of the calculations are shown in Tables 2 and 3. The following
conclusions can be drawn from these results:
(a) Despite the presence of singularities of the exact solution w , the se-
quence of adaptively created meshes gives an apparent rate of convergence for
the energy norm of the error in w that is close to the theoretically "optimal"
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No. of elements in quarter segment 4 16 64
(uniform mesh)
Energy Calculations
(E(w) = .56231)
E(%) .511608 .549340 .559040
Relative energy norm of error =
vzl
B w) 30.1% 15.2% 7.62%
E(w)
8 ratio for energy norm of error .94 .96 .98
Calculation of displacement
(w = w(0,0) = -.29469)
w(0,0) -.310714 -.298393 -.295596
(5.4%) (1..3%) (.31%)
- -.287306 -.292829 -.294220
(2.5%) (.63%) (.16%)
6 ratio for error in W 1.07 .98 .99
Calculation of stress component
(v = %(1,0) = .67528)
i 482142 .565480 .616687
3w (29%) (16%) (8.7%)
ae(1,0)
ax
i
v .66623 .67313 .67477
(1.3%) (.32%) (.076%)
6 ratio for error in % .93 1.02 1.06
Table 1: Numerical results for Example 1.

(Percentages in parentheses are
relative errors with respect to
exact values.)
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