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Preface

This book is based on a series of lecture notes for a graduate course in the Department
of Statistics and Probability at Michigan State University. The goal is to prepare grad-
uate students for research in the area of fractional calculus, anomalous diffusion, and
heavy tails. The book covers basic limit theorems for random variables and random
vectors with heavy tails. This includes regular variation, triangular arrays, infinitely
divisible laws, random walks, and stochastic process convergence in the Skorokhod
topology. The basic ideas of fractional calculus and anomalous diffusion are intro-
duced in the context of probability theory. Each section of the book provides material
roughly equivalent to one lecture. Most sections conclude with some additional details,
intended for individual reading, and to make the book relatively self-contained.

Heavy tails are applied in finance, insurance, physics, geophysics, cell biology,
ecology, medicine, and computer engineering. A random variable has heavy tails if
P(|X| > z) =~ Cz for some a > 0. If a < 2, then the second moment of X is
undefined, so the usual central limit theorem does not apply. A heavy-tailed version
of the central limit theorem leads to a stable distribution. Random walks with heavy
tails converge to a stable Lévy motion, similar to Brownian motion. The densities of
Brownian motion solve the diffusion equation, which provides a powerful link between
differential equations and stochastic processes. Densities of a stable Lévy motion solve
a fractional diffusion equation like

Y

9
a (.I'.t) == Ca;‘ (.l.,t)

using a fractional derivative of order «. Fractional derivatives are limits of fractional
difference quotients, using the same fractional difference operator that appears in time
series models of long range dependence.

Vector models with heavy tails are useful in many applications, since physical space
is not one dimensional. A heavy tailed version of the central limit theorem for random
vectors leads to an operator stable limit distribution, which can have a combination
of normal and stable components. Vector random walks with heavy tails converge to
an operator stable Lévy motion. Probability densities of this random walk limit solve
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a vector fractional diffusion equation like

9 (z t)—ca—a (z t)+c£ (z,y,t)
8tp s Y, - laxap 2 Y, 2(9pr 'Y,

with a different fractional derivative in each coordinate.

Many interesting research problems in this area remain open. This book will guide
the motivated reader to understand the essential background needed to read and un-
derstand current research papers, and to gain the insights and techniques needed to
begin making their own contributions to this rapidly growing field.

East Lansing, November 2011 Mark M. Meerschaert, Alla Sikorskii
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Chapter 1

Introduction

Fractional calculus is a rapidly growing field of research, at the interface between
probability, differential equations, and mathematical physics. Fractional calculus is
used to model anomalous diffusion, in which a cloud of particles spreads in a different
manner than traditional diffusion. This book develops the basic theory of fractional
calculus and anomalous diffusion, from the point of view of probability.

Traditional diffusion represents the long-time limit of a random walk, where finite
variance jumps occur at regularly spaced intervals. Eventually, after each particle
makes a series of random steps, a histogram of particle locations follows a bell-shaped
normal density. The central limit theorem of probability ensures that this same bell-
shaped curve will eventually emerge from any random walk with finite variance jumps,
so that this diffusion model can be considered universal. The random walk limit is
a Brownian motion, whose probability densities solve the diffusion equation. This
link between differential equations and probability is a powerful tool. For example, a
method called particle tracking computes approximate solutions of differential equa-
tions, by simulating the underlying stochastic process.

However, anomalous diffusion is often observed in real data. The “particles” might be
pollutants in ground water, stock prices, sound waves, proteins crossing a cell bound-
ary, or animals invading a new ecosystem. The anomalous diffusion can manifest in
asymmetric densities, heavy tails, sharp peaks, and/or different spreading rates. The
square root scaling in the central limit theorem implies that the width of a particle
histogram should spread like the square root of the elapsed time. Both anomalous
super-diffusion (a faster spreading rate) and sub-diffusion have been observed in real
applications. In this book, we will develop models for both, based on fractional calcu-
lus.

The traditional diffusion equation relates the first time derivative of particle con-
centration to the second derivative in space. The fractional diffusion equation replaces
the space and/or time derivatives with their fractional analogues. We will see that
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fractional derivatives are related to heavy tailed random walks. Fractional derivatives
in space model super-diffusion, related to long power-law particle jumps. Fractional
derivatives in time model sub-diffusion, related to long power-law waiting times be-
tween particle jumps. Fractional derivatives were invented by Leibnitz soon after their
more familiar integer-order cousins, but they have become popular in practical appli-
cations only in the past few decades. In this book, we will see how fractional calculus
and anomalous diffusion can be understood at a deep and intuitive level, using ideas
from probability.

The first chapter of this book presents the basic ideas of fractional calculus and
anomalous diffusion in the simplest setting. All of the material introduced here will
be developed further in later chapters.

1.1 The traditional diffusion model

The traditional model for diffusion combines elements of probability, differential equa-
tions, and physics. A random walk provides the basic physical model of particle
motion. The central limit theorem gives convergence to a Brownian motion, whose
probability densities solve the diffusion equation. We start with a sequence of indepen-
dent and identically distributed (iid) random variables Y, Y}, Y5, Y3, ... that represent
the jumps of a randomly selected particle. The random walk

S’n=Yl+"'+Yn

gives the location of that particle after n jumps. Next we recall the well-known cen-
tral limit theorem, which shows that the probability distribution of S,, converges to a
normal limit. Here we sketch the argument in the simplest case, using Fourier trans-
forms. Details are provided at the end of this section to make the argument rigorous.
A complete proof of the central limit theorem will be given in Theorem 3.36 using
different methods. Then in Theorem 4.5, we will use regular variation to show that
the same normal limit governs a somewhat broader class of random walks.

Let F(z) = P[Y < z] denote the cumulative distribution function (cdf) of the jumps,
and assume that the probability density function (pdf) f(z) = F’(x) exists. Then we
have

b
Pla<Y <t = / (@) dz = F(b) — F(a)
for any real numbers a < b. The moments of this distribution are given by
iy =EY?) = [ (@) do

where the integral is taken over the domain of the function f.
The Fourier transform (FT) of the pdf is

f(k)=E[e7*Y] = /e‘isz(:r)d.r.
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The FT is closely related to the characteristic function E [e“"y] = f(—k). If the first
two moments exist, a Taylor series expansion e* =1 + z + 22/2! + .-+ leads to

A

f(k) = / (1 — ikz + %(—ikx)z +- ) fle)de =1 —ikp — 3k%p2 + o(k?)  (1.1)

since [ f(z)dz = 1. Here o(k?) denotes a function that tends to zero faster than k2
as k — 0. A formal proof of (1.1) is included in the details at the end of this section.
Suppose g = 0 and pg = 2, i.e., the jumps have mean zero and variance 2. Then
we have
flk) =1—-k>+o(k?)
as k — 0. Thesum S, =Y; +---+Y, has FT
E[e~#*5:] =E I:e—ik(Y1+...+Yn):|

=E [e’"ikyl] ..E [e——ikYn]

—F [e—ikY]n _ f(k)n
and so the normalized sum n~1/2S5, has FT

E [e—ik(n—l/zs")] —E [e—i(n~l/2k)5n] = f(n~12k)"
2 n ) (1.2)
= (1 - l% + o(n_1)> — ek

using the general fact that (1 + (r/n) + o(n™1))" — e" as n — oo for any r € R (see
details). The limit

—K? —ikZ —ikz_ 1 —z2/4
e " =Ele =[e —e dz
[ ] / Var
using the standard formula from FT tables [190, p. 524]. Then the continuity theorem
for FT (see details) yields the traditional central limit theorem (CLT):

. Yi+---+Y,
n~128, = H¥otin =7 (1.3)
Vn
where = indicates convergence in distribution. The limit Z in (1.3) is normal with
mean zero and variance 2.

An easy extension of this argument gives convergence of the rescaled random walk:
Set) =Y1+ -+ + Yy

gives the particle location at time ¢ > 0 at any time scale ¢ > 0. Increasing the time
scale ¢ makes time go faster, e.g., multiply ¢ by 60 to change from minutes to hours.
The long-time limit of the rescaled random walk is a Brownian motion: As ¢ — oc we
have

2 (<] 2 S
E e*i’“"”slcu} - (1 - ’% +o(c*1)) = Kl - ]% +o(c*1)) } — et
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where the limit
et = p(k,t) = /e_“"p(w.t) dx

is the FT of a normal density

1 /)

p($1 t) = \/m

with mean zero and variance 2¢t. Then the continuity theorem for FT implies that
c‘1/25[ct] = 7

where the Brownian motion Z; is normal with mean zero and variance 2t.
Clearly the FT p(k,t) = e~t** solves a differential equation

a8 _

= —k2p = (ik)2p. 1.
7 k*p = (ik)"p (1.5)

If f" exists and if f, f’ are integrable, then the FT of f'(z) is (ik)f(k) (see details).
Using this fact, we can invert the FT on both sides of (1.5) to get (see details)

ap 9%

—— =, 1.6

ot 0x? (16)
This shows that the pdf of Z; solves the diffusion equation (1.6). The diffusion equation
models the spreading of a cloud of particles. The random walk S,, gives the location of
a randomly selected particle, and the long-time limit density p(z,t) gives the relative
concentration of particles at location x at time t > 0.

More generally, suppose that u; = E[Y,] = 0 and pp = E[Y,?] = 02 > 0. Then

~

f(k) =1—10%k* + o(k?)

leads to
o 2k2 n
Ele™*m ") = (1 ~m +0(n“1)) — exp(—30°k?)
and
i o2k? [et]
E[e—zkc S[cz]] — (1 _ 7 + O(C_l)> — exp(—%t02k2) — ﬁ(k,t). (1.7)
This FT inverts to a normal density
1 —z2/(207%t)

e

plx,t) =

(1) V2mo?t

with mean zero and variance o2t. The FT solves
dp 2

2
9P _ 9 g2s T a2
il ka 2(zk)p
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which inverts to

ap  o?p
ot~ 2 9z
This form of the diffusion equation shows the relation between the dispersivity D =
0?/2 and the particle jump variance. Apply the continuity theorem for FT to (1.7) to

get random walk convergence:

(1.8)

6_1/25[“] = 7

where Z; is a Brownian motion, normal with mean zero and variance o2t.
In many applications, it is useful to add a drift: vt + Z; has FT

) . 1
}E[e—lk(vt+zl)] = e—lkvt—ita2k2 _ ﬁ(k,t),

which solves
dﬁ . 02 a2\ A
7= (—zkv+ 7(21‘:) p.
Invert the FT to obtain the diffusion equation with drift:
p _ Op

ot~ or T 9o \L.9)

This represents the long-time limit of a random walk whose jumps have a non-zero
mean v = 11 (see details). Figure 1.1 shows a typical concentration profile, a normal
pdf

— ; —(z—vt)?/(20%t)

p(z,t) \/%T%e (1.10)
that solves the diffusion equation with drift (1.9). Figure 1.2 shows how the solution
evolves in time. Since vt + Z; has mean vt, the center of mass is proportional to the
time variable. Since vt + Z, has variance o2t, the standard deviation is ov/¢, so the
particle plume spreads proportional to the square root of time. Setting z = vt in (1.10)
shows that the peak concentration falls like the square root of time. The simple R
codes used to produce the plots in Figures 1.1 and 1.2 will be presented and discussed
in Examples 5.1 and 5.2, respectively.

Details

The FT f(k) = [e~"** f(z)dz is defined for integrable functions f, since |e~*7| = 1.
Hence the pdf of any random variable X has a FT. In fact, the FT f(k) = E[e~"*X]
exists for all £ € R, for any random variable X, whether or not it has a density. The
next two results justify the FT expansion (1.1).

Proposition 1.1. If u, = E[|Y|?] ezists, then

pp = ()P fP(0) = (=i) T E [e], (1.11)
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0.10 0.12
1 |

0.08
|

density

Figure 1.1. Solution to diffusion equation (1.9) at time ¢t = 5.0 with velocity v = 3.0 and
variance o2 = 2.0.

density
0.15 0.20 0.25
I 1

0.10

0.05
L

x1

Figure 1.2. Solution to diffusion equation (1.9) at times t; = 1.0 (solid line), to = 2.0
(dotted line), and t3 = 3.0 (dashed line). The velocity v = 3.0 and variance o* = 2.0.
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Proof. The first derivative of the FT is

a _ okt h) — f(k)
f(])(k) = Aﬂf

_ ;]11—% B-1 (IE [e-i(k+h)x} —E [e—ikX]) _ ;ILiB]o]E[gh(X)]

where gy (z) = h™1 (et kthle _e—ihzy — p=1(g=the _ 1)~k ig the difference quotient
for the differentiable function k s =%, so that gj(z) — g(x) = —ize™** as h — 0.
From the geometric interpretation of e as a vector in complex plane, it follows that
le®” — 1| < |y| for all y € R. Then

e—iha: =1

h

()] = [l < Ja

for all h € R and all z € R. The Dominated Convergence Theorem states that if
gr(z) — g(z) for all z € R and if |gn(z)| < r(zx) for all h and all z € R, and if E[r(X)]
is finite, then E[gy(X)] — E[g(X)] and these expectations exist (e.g., see Durrett [59,
Theorem 1.6.7, p. 29]). Since E[|X|] exists, the dominated convergence theorem with
r(z) = |z| implies that

FO(k) = lim Elgn(X)] = Elg(X)] = E [(~iX) e™*X].

Set k = 0 to arrive at (1.11) in the case p = 1. The case p > 1 is similar, using
the fact that gn(z) = h™P(e~*"* — 1)Pe="* is the pth order difference quotient for
k +— e~ Alternatively, the proof for the case p > 1 can be completed using an
induction argument. O

Proposition 1.2. If u, = E[|Y|?] exists, then the FT of Y is

f(k) = Z (_;f“ y pj + o(kP) (1.12)

as k — 0.

Proof. If the FT f(k) is p times differentiable, then the Taylor expansion

B s
. ki .
F0) =32 51170 + o)
=
is valid for all k € R. Apply Proposition 1.1 to arrive at (1.12). m]

In equation (1.2) we used the fact that

(1—}—%—{-0(1/71))” — e asn — oo. (1.13)
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To verify this, write o(1/n) = £,/n where &, — 0 as n — oo. Note that |r +¢,| < 1
for n sufficiently large, and then use the fact that In(1+2) = 2+ O(2?) as z — 0. This
notation means that for some 6 > 0 we have

In(1+2z2)—z

<C
22

for some constant C' > 0, for all |z| < 4. Then we can write
” -
In {<1+T+E") } =nln {l+r+6n
n n |
1 1
:n[r+En +O(—2)] :T+€n+0<—> =T
n n n

Then apply the continuous function exp(z) to both sides to conclude that (1.13) holds.

In (1.3) we use the idea of weak convergence. Suppose that X,, is a sequence of
random variables with cdf F,(z) = P[X,, < z|, and X is a random variable with cdf
F(z) =P[X < z]. We write X,, = X if F,(z) — F(z) for all € R such that F is
continuous at z. This is equivalent to the condition that E[h(X,,)] — E[h(X)] for all
bounded, continuous functions h : R — R. See for example Billingsley [36].

In (1.3) we use the continuity theorem for the Fourier transform. Let f,(k) =
E[e~*X»] and f(k) = E[e"*X]. The Lévy Continuity Theorem [135, Theorem 1.3.6]
implies that X,, = X if and only if f,(k) — f(k). More precisely, we have:

Theorem 1.3 (Lévy Continuity Theorem). If X,,, X are random variables on R, then
X, = X implies that f,(k) — f(k) for each k € R, uniformly on compact subsets.
Conversely, if X, is a sequence of random variables such that fn(k) — f(k) for each
k € R, and the limit f(k) is continuous at k = 0, then f(k) s the F'T of some random
variable X, and X, = X.

In (1.6) we used the fact that the FT of f’(x) is (ik)f(k). If f'(x) exists and is
integrable, the limits

% 0
lim f(z)= f(0) + lim f'(u)du and lim f(z)= f(0) — lim f(u)du
exist. If f is integrable, then these limits must equal zero. Then we can integrate by
parts to get
o0 00
/ e ke f(z) do = [e‘ik“”f(:c)]oo +/ ike™™* f(z) dx = 0+ (ik) f(k). (1.14)

T=—00
—00 —00

Applying this fact to the function f’ shows that, if f” is also integrable, then its FT
equals (ik)?f(k), and so

(ik)2p(k, £) = / e-i“a‘?—;p(x, ) da. (1.15)

To arrive at (1.6), we inverted the FT (1.5). This can be justified using the following
theorem.



