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Preface

A NATO Advanced Research Workshop “Computational Commutative and Non-
Commutative Algebraic Geometry” was held in Chishinau, Moldova from 6 to 11 June,
2004. The financial support was offered by the NATO grant PST.ARW.980392. The work-
shop was organized by Gerhard Pfister and Svetlana Cojocaru with assistance of members
of the Organizing Committee: Jiirgen Herzog, Lorenzo Robbiano, Victor Ufnarovski. There
were 25 lectures given by the participants and open discussions on the subjects presented.
The central theme of this workshop was the interplay between commutative and non-
commutative algebraic geometry, with its theoretical and computational aspects. The Scien-
tific Program emphasizes current trends in Commutative and Non-Commutative Algebraic
Geometry and Algebra. The contributors to this volume review the state of the art and pre-
sent new evolution and progress reflecting the topics discussed in the lectures. The volume
addresses in the first place researchers and graduate students. The editors would like to
thank the contributors to this volume. Thanks are due to the NATO Public Diplomacy Divi-
sion for their generous financial support. Special thanks to Tatiana Verlan, who had the task
to correct and prepare the manuscript.

December 2004,
Svetlana Cojocaru,
Gerhard Pfister,
Victor Ufharovski
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The Structure of Simp.(A) for Finitely
Generated k-algebras A'

Olav Laudal 2
& Institute of Mathematics, University of Oslo

Abstract. In this paper we study the non-commutative scheme structure of the
set of iso-classes of simple modules on a finitely generated k-algebra, k£ an alge-
braically closed field. We introduce the notion of geometric algebra and, referring
to [12], we prove that these algebras are determined by the structure of this non-
commutative scheme. We consider natural completions of these schemes, adding
indecomposable modules at infinity. This leads to a notion of correspondence on
plane curves, which we explore to some degree. We end the paper with a sketch of
how to relate global invariants of the algebra, like cyclic homology, to correspond-
ing invariants of the scheme of simple finite-dimensional modules.

Keywords. Geometric algebras, modules, simple modules, extensions, deformation
theory, moduli spaces, non-commutative schemes, non-commutative plane curves.

Introduction

Let k be any field, most often assumed to be algebraically closed, and consider a finitely
generated k-algebra A. Let

Simpcso(A) = U Simpn(A)

n

be the set of (iso-classes of) finite dimensional simple right A-modules. An n-
dimensional simple A-module V' € Simp, (A) defines a surjective homomorphism of
k-algebras, p : A — Endj(V'), the kernel of which is a two-sided maximal ideal my- of
A. Let Max<o(A) be the set of all such maximal ideals of A4, forn > 1. To exclude
some strange and for our purposes non-interesting cases, we shall assume that A has the
following property:

Rad(A)>® := N m”" =0

meMazr <o (A),n>0

For want of a better name, we shall call such algebras geometric. This condition is actu-
ally satisfied for most finitely generated k-algebras that we shall be interested in, and in

"Mathematics Subject Classification (2000): 14A22, 14H50, 14R, 16D60, 16G30. Part of this paper was
written during the authors stay at Institute Mittag-Leffler.

20lav Arnfinn Laudal, Box.1053, Blindern, 0316 Oslo, Norway, Institute of Mathematics, Umvusny of
Oslo. E-mail: arnfinnlmath.uio.no, http://www.math.uio.no.
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particular it is satisfied for the free k-algebra on d symbols, A = k < z1, 29, ...,24 >,
see the example (4.19) of [10], [12].

We shall be concerned with the structure of the individual Simp, (A4), n > 1, and
we shall construct natural completions Simpr(A), of the scheme Simp,,(A), adding
indecomposable modules. We shall also see that the scheme of indecomposable two-
dimensional representations induces interesting correspondences for hypersurfaces, and
in particular for plane curves. The study of Indp(A) := Simpr(A) — Simp,(A)
may also throw light on the classical McKay correspondence. As a tool for study-
ing Simpr(A) we introduce the Jordan morphism and a corresponding generalization
of the Deligne-Simpson problem. Finally we shall discuss to what extent the family
{Simpy,(A)}n>1 of schemes determines the global structure of A. In particular, are the
K-groups (resp. the cyclic homology) of A determined by the K-groups, (resp. the de
Rham cohomology) of the different Simp,,(A)? Conversely, what can we learn about
the de Rham cohomology of Simp,,(A), knowing the cyclic cohomology of A?

This paper will be followed by a more comprehensive study of non-commutative
plane curves, see [5].

1. Some General Results

In [10], [11], [12], we introduced non-commutative deformations of families of mod-
ules of non-commutative k-algebras, and the notion of swarm of right modules (or more
generally of objects in a k-linear abelian category).

Let a,. denote the category of r-pointed not necessarily commutative k-algebras R. The
objects are the diagrams of k-algebras,

k"5 RSk

such that the composition of ¢+ and 7 is the identity. Any such r-pointed k-algebra R
is isomorphic to a k-algebra of 7 x r-matrices (R; ;). The radical of R is the bilat-
eral ideal Rad(R) := kerm, such that R/Rad(R) ~ k". The dual k-vector space of
Rad(R)/Rad(R)? is called the tangent space of R.

For r = 1, there is an obvious inclusion of categories
L C a;

where [, as usual, denotes the category of commutative local artinian k-algebras with
residue field k.

Fix a not necessarily commutative k-algebra A and consider a right A-module M.
The ordinary deformation functor

Defpr il — Sets

is then defined. Assuming Ext'y(M, M) has finite k-dimension for i = 1,2, it is well
known, see [18], or [9], that De f ;, has a Noetherian pro-representing hull H, the formal
moduli of M. Moreover, the tangent space of H is isomorphic to ExtY (M, M), and H
can be computed in terms of Ext’y (M, M), i = 1,2 and their matric Massey products,
see [9].
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In the general case, consider a finite family V = {V;}/_, of right A-modules. As-
sume that,

dimy Extly (V;, Vj) < oo.

Any such family of A-modules will be called a swarm. We shall define a deformation
functor,

Defy :a, — Sets

generalizing the functor Def ), above. Given an object 7 : R = (R;;) — k" of
a,., consider the k-vector space and left R-module (R;; @ V;). It is easy to see that
Endr((R;; @ V) ~ (R;j ®r Hom(V;,V;)). Clearly 7 defines a k-linear and left
R-linear map,

m(R) : (Ri; ®Qr Vj) = ®]_, Vi,
inducing a homomorphism of R-endomorphism rings,
T(R) : (Ri; @x Homy(Vi, V})) = @7, Endy,(V;).

The right A-module structure on the Vs is defined by a homomorphism of k-algebras,
no : A —= ®]_1 End(V;). Let

Defy(R) € Sets
be the set of isoclasses of homomorphisms of k-algebras,
n' A= (R j @ Homy(Vi, V;))
such that,

7(R) on' = o,

where the equivalence relation is defined by inner automorphisms in the k-algebra
(Ri; @ Hom(V;,V;)) inducing the identity on ®7_, Endy(V;). One easily proves
that De fy, has the same properties as the ordinary deformation functor and we prove the
following, see [11]:

Theorem 1. The functor Defy has a pro-representable hull, i.e. an object H of the
category of pro-objects @, of a,, together with a versal family,

V=(H;®V)e lim De fy(H/m"),
n>1

where m = Rad(H), such that the corresponding morphism of functors on a,,

k:Mor(H,—) — Defy
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defined for ¢ € Mor(H, R) by k(¢) = R ®¢ V, is smooth, and an isomorphism on the
tangent level. Moreover, H is uniquely determined by a set of matric Massey products
defined on subspaces,

D(n) C Ext'(Vi,V},) ® - ® Ext' (V;,_,, Vi),
with values in Ext*(V;, Vy).

The right action of A on V defines a homomorphism of k-algebras,
n:A— OV):=Endy(V) = (H;; ® Homy(Vi, V),

and the k-algebra O(V) acts on the family of A-modules V = {V;}, extending the action
of A. If dim;,V; < oo, forall i = 1,...,r, the operation of associating (O(V), V) to
(A, V) turns out to be a closure operation.

Moreover, we prove the crucial result,

A generalized Burnside theorem Let A be a finite dimensional k-algebra, k an alge-
braically closed field. Consider the family V = {V;}_, of all simple A-modules, then

n:A— OV) = (H;; ® Homy(V;,V}))

is an isomorphism.

We also prove that there exists, in the non-commutative deformation theory, an ob-
vious analogy to the notion of pro-representing (modular) substratum H of the formal
moduli H, see [8]. The tangent space of H is determined by a family of subspaces

Exty(V;,V;) C Ext!y(V;, V),  i#3j

the elements of which should be called the almost split extensions (sequences) relative
to the family V, and by a subspace,

To(A) C [ Exth(Vi, Vi)

which is the tangent space of the deformation functor of the full subcategory of the
category of A-modules generated by the family V = {V;}7_ |, see [8]. If V = {V;}I_,
is the set of all indecomposables of some artinian k-algebra A, we show that the above
notion of almost split sequence coincides with that of Auslander, see [16].

Using this we consider, in [11], the general problem of classification of iterated ex-
tensions of a family of modules V = {V;, }I_,, and the corresponding classification of
filtered modules with graded components in the family ), and extension type given by a
directed representation graph I', see §3. The main result is the following, see [11],

Proposition 2. Let A be any k-algebra, V = {V;}_, any swarm of A-modules, i.e. such
that,

dimy, Exty (Vi,V;) < oo foralli,j=1,...,r.
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(i): Consider an iterated extension E of V, with representation graph I'. Then there
exists a morphism of k-algebras

¢: H(V) = k[T
such that
E ~ k[T)®,V

as right A-algebras.
(ii): The set of equivalence classes of iterated extensions of V with representation
graph T, is a quotient of the set of closed points of the affine algebraic variety

A[T) = Mor(H(V), k(L))

(iii): There is a versal family V [I'] of A-modules defined on A [T'], containing as fibres
all the isomorphism classes of iterated extensions of V with representation graph T.

To any, not necessarily finite, swarm ¢ C mod(A) of right-A-modules, we have
associated two associative k-algebras, see [10] and [12], O(|¢|, 7) = I'&HVC\C\ O(V), and

a sub-quotient O, (¢), together with natural k-algebra homomorphisms,
n(lel) : A — O(|¢|, m)
and,
n(e) : A — Ox(c)

with the property that the A-module structure on ¢ is extended to an O-module structure
in an optimal way, see also §4. We then defined an affine non-commutative scheme of
right A-modules to be a swarm ¢ of right A-modules, such that 5(¢) is an isomorphism.
In particular we considered, for finitely generated k-algebras, the swarm Simp% (A)
consisting of the finite dimensional simple A-modules, and the generic point A, together
with all morphisms between them. The fact that this is a swarm, i.e. that for all objects
Vi, Vj € Simp<o we have dimy Extl (V;, V;) < oo, is easily proved. We have in [12]
proved the following result, (see (4.1), loc.cit. and Lemma 2. above.)

Proposition 3. Let A be a geometric k-algebra, then the natural homomorphism,
n(Simp*(A)) : A — O (Simp’ (A))

is an isomorphism, i.e. Simp% (A) is a scheme for A.

In particular, Simp% . (k < x1, 22, ...,xq >), is a scheme for k < z1, 22, ..., x4 >.
To analyze the local structure of Simp,,(A), we need the following, see [12],(3.23),
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Lemma 4. Let V = {V;},—1, . be a finite subset of Simp(A), then the morphism
of k-algebras,

A= OW) = (H;; @ Homy(Vi,V}))
is topologically surjective.

Proof. Since the simple modules V;, ¢ = 1, .., are distinct, there is an obvious surjec-
tion, 79 : A — Hi:l,..,r Endy(V;). Put v = kerno, and consider for m > 2 the finite-
dimensional k-algebra, B := A/t™. Clearly Simp(B) = V, so that by the generalized
Burnside theorem, see [12], (2.6), we find, B ~ OB (V) := (Hzﬁ- ®r Homy(V;, V})).
Consider the commutative diagram,

A —— (H,‘/"] ®k Homy(Vi,V;)) =: OA(V)

| T

B —» (HZBJ ®r Homy(Vi, V;)) ———— O0A(V)/m™

where all morphisms are natural. In particular « exists since B = A/t™ maps into
OA(V)/rad™, and therefore induces the morphism a commuting with the rest of the
morphisms. Consequently « has to be surjective, and we have proved the contention. [

Localization and topology Let s € A, and consider the open subset D(s) = {V €
Simp(A)| p(s) invertible in Endy(V')}. The Jacobson topology on Simp(A) is the
topology with basis {D(s)| s € A}. It is clear that the natural morphism,

n:A— O(D(s), )

maps s into an invertible element of O(D(s), 7). Therefore we may define the localiza-
tion A,y of A, as the k-algebra generated in O(D(s), 7) by i and the inverse of 7(s).
This furnishes a general method of localization with all the properties one would wish.
And in this way we also find a canonical (pre)sheaf, O defined on Simp(A).

Definition 5. When the k-algebra A is geometric, such that Simp*(A) is a scheme for
A, we shall refer to the presheaf O, defined above on the Jacobson topology, as the
structure presheaf of the scheme Simp(A).

In the next § we shall see that the Jacobson topology on Simp(A), restricted to each

Simpp(A) is the Zariski topology for a classical scheme-structure on
Simp,(A).

2. The Algebraic (Scheme) Structure on Simp,,(A)

Recall that a standard n-commutator relation in a k-algebra A is a relation of the type,

[a1, a9, ...,a2,] := Z 8ign(0)ay(1)ag(2)---Ag(2n) =0
LI
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where {a1,as, ..., as,} is a subset of A. Let I(n) be the two-sided ideal of A generated
by the subset,

{la1,az, ...,a2,]| {a1, a2, ...,a2,} C A}.
Consider the canonical homomorphism,
pn:A— A/I(n) =: A(n).
It is well known that any homomorphism of k-algebras,
p:A— Endp (k") =: M, (k)
factors through p,,, see e.g. [4].

Corollary 6. (i). Let V;,V; € -Simp<,(A) and put v = my, N my,. Then we have, for
m > 2,

Exty(V;,Vj) = Exty ;om (Vi, Vj)
(ii). Let V- € Simpy(A). Then,
Exty(V,V) ~ Extly,, (V,V)
Proof. (i) follows directly from Lemma 4. To see (ii), notice that Extl (V. V) ~
Dery(A, Endy(V))/Triv ~ Dery(A(n), Endy(V))/Triv ~ Emti‘(n)(V, V). The

second isomorphism follows from the fact that any derivation maps a standard n-
commutator relation into a sum of standard n-commutator relations. O

Example 7. Notice that, for distinct V;, V; € Simp<, (A), we may well have,
Baty(V,,V;) # Eatly, (Vi V;).

In fact, consider the matrix k-algebra,

4= (),

and letn = 1. Then A(1) = k[z] ® k[z]. Pur Vi = k[z]/(z) & (0), Vo = (0) ® k[z]/(z),
then it is easy to see that,

Exty(Vi,V;) = k, Exty)(Vi,V;) = 0,i # j,
but,

Biwty (Vi Vo) = BtV o) = bsd = 1,2



