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Introduction

Programmers who use homogeneous coordinates for geometric computations
are implicitly — and often unknowingly — working in the so-called projective space,
a strange and wonderful world which only superficially resembles the Euclidean space
we all know and love. One difference is that certain concepts that are fundamental to
geometric computing, such as segments, triangle orientation, and convexity, cannot
be consistently defined in the projective world.

Oriented projective geometry is an alternative geometric model that com-
bines the elegance and efficiency of projective geometry with the consistent han-
dling of oriented lines and planes, signed angles, segments, convex sets, and many
other concepts that the classical theory does not support. In this monograph I ad-
vance the thesis that oriented projective space — especially in its analytic form,
based on signed homogeneous coordinates — is a better framework for geometric
computations than their classical counterparts.

The differences between the classical and oriented models are largely con-
fined to the mathematical formalism and its interpretation. Computationally, the
differences are minimal; most geometric algorithms that use homogeneous coordi-
nates can be easily converted to the oriented model with negligible effect on their
performance. For many algorithms, the required changes are largely a matter of
paying attention to the order of operands and to the signs of coordinates.

It is not the aim of this monograph to push the remote frontiers of math-
ematics or computer science. Theoreticians will not find here any deep theorems,
intricate algorithms, or sophisticated data structures. Expert geometers will notice
that oriented projective geometry is just anothr name for spherical (or double ellip-
tic) geometry, which to them is an old and well-explored subject.

On the other hand, graphics programmers may be surprised to learn that
the curved surface of the sphere is an excellent model for computations dealing with
straight lines on the flat Euclidean plane. The aim of this monograph is to point
out the value of this model for practical computing, and to develop it into a rich,
consistent, and effective tool that those programmers can use in their everyday work.
In keeping with this goal, I have strived to keep formal derivations and mathematical
jargon to a minimum, and (at the risk of being tedious) to illustrate many general
definitions and theorems with explicit examples in one, two, and three dimensions.

Here is a brief outline of this book. Chapter 1 gives a quick overview of
classical and oriented projective geometry on the plane, and discusses their advan-
tages and disadvantages as computational models. Chapters 2 through 7 define the
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2 INTRODUCTION

canonical oriented projective spaces of arbitrary dimension, the operations of join
and meet, and the concept of relative orientation, and study their properties. Chap-
ter 8 defines projective maps, the space transformations that preserve incidence and
orientation; these maps are used in chapter 9 to define abstract oriented projective
spaces. Chapter 10 introduces the valuable notion of projective duality. Chapters 11,
12, and 13 deal with additional concepts related to projective maps, namely projec-
tive functions, projective frames, relative coordinates, and cross-ratio. Chapter 14
tells about convexity in oriented projective spaces. Chapters 15, 16, and 17 show how
the affine, Euclidean, and linear vector spaces can be emulated with the oriented pro-
jective space. Finally, chapters 18 through 20 discuss the computer representation
and manipulation of lines, planes, and other subspaces.

This monograph is a slightly edited and revised version of my Ph.D. disser-
tation, Primitives for Computational Geometry, submitted to Stanford University
in May 1988, and printed under the same title as Technical Report 36 of the DEC
Systems Research Center in January 1989. The present edition incorporates innu-
merable small corrections and improvements over these earlier versions.
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all, to my advisor Leo Guibas, who helped me, prodded me, and supported me in
more ways that I could possibly list here; and to my boss Bob Taylor, who gave
me constant encouragement and the opportunity to experience the unique research
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of my dissertation. From Mary-Claire van Leunen and Cynthia Hibbard I received
a good deal of advice on the art and science of writing, which immensely improved
my syntax and style — from truly atrocious to, I hope, merely dreadful.

I am also indebted to Ken Brooks, Marc Brown, Bill Kalsow and Lyle
Ramshaw for taking time out of their own research to maintain the software on
which I depended; and to the Digital Equipment Corporation, the Xerox Corpora-
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Chapter 1
Projective geometry

The bulk of this chapter is a quick overview of the standard (unsigned)
homogeneous coordinates for the plane, and the classical (unoriented) projective
geometry which they implicitly define. In order to motivate what follows, I will dis-
cuss at some length the advantages and disadvantages of homogeneous coordinates
as a computational model, compared to ordinary Cartesian coordinates. The chap-
ter concludes with a quick overview of oriented projective geometry, the alternative
computational model which is the subject of this book, and which I define formally
in the following chapters.

The description of projective geometry given below below is necessarily
sketchy, and does not even begin to make justice to the richness and elegance of
the subject. Mathematically inclined readers who wish to know more are urged to
start from any basic textbook on the subject, such as Coxeter’s [6], and follow the
leads from there. Readers interested in practical applications of projective geometry
to computer graphics are advised to read the the book by Penna and Patterson [16].

1. The classic projective plane

The projective plane can be defined either by means of a “concrete” model,
borrowing concepts from linear algebra or Euclidean geometry [15], or as an abstract
structure satisfying certain axioms [4, 6].

Definitions that follow the axiomatic approach have the advantage of being
concise and elegant, but unfortunately they cannot be generalized easily to spaces
of arbitrary dimension. Moreover, the axiomatic approach seems better suited to
formalizing intuitive knowledge already acquired, than at developing and teaching
such knowledge. Therefore, considering the aims of this monograph, I have chosen
to avoid the axiomatic approach, and to base all definitions on four concrete models
of projective space: the straight, spherical, analytic, and vector space models, which
are described below.



4 1. PROJECTIVE GEOMETRY

1.1. The straight model

The straight model of the projective plane P, consists of the real plane R?,
augmented by a line at infinity Q, and by an infinity point doo for each pair of
opposite directions {d, —d}. The point doo = (—d)co is by definition on the line
and also on every line that is parallel to the direction d. See figure 1.

Figure 1. The straight model of the projective plane P,.

1.2. The spherical model

The spherical model of P, consists of the surface of a sphere, with diametri-
cally opposite points identified. The lines of P, are represented by the great circles
of the sphere, again with opposite points identified. See figure 2.

/— a line

a point

Figure 2. The spherical model.

The spherical model clearly shows that all lines and points are equivalent in their
topological and incidence properties. The special role that Q and the infinite points
seem to play in the straight model is a mere artifact of the latter’s representation.
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1.3. The analytic model

The analytic model represents points of P, by their homogeneous coordinates,
and lines by their homogeneous coefficients. A point is by definition a non-zero triplet
of real numbers [w, z,y], with scalar multiples identified. In other words, [w,z,y]
and [Aw, Az, Ay] are the same point, for all A # 0. A line is also represented by a
non-zero real triplet (W, X,Y’), which by definition is incident to all points [w, z, y]
such that Ww + Xa + Yy = 0. Note that (W, X,Y) and (AX, A\Y,\Z) are the same
line for all A # 0.

1.4. The vector space model

Geometrically, we can identify the point [w,z,y] of P, with the line of R3
passing through the origin and through the point (w, z,y). The line (W, X,Y’) of P,
then corresponds to the plane of R? passing through the origin and perpendicular
to the vector (W, X,Y). In other words, we can identify points and lines of P, with
one- and two-dimensional linear subspaces of the three-dimensional vector space R®.
In this way we get the vector space model of P,. See figure 3.

a line

Figure 3. The vector space model of P,.

1.5. Correspondence between the models

The analytic and straight models of P, are connected by the homogeneous-
to-Cartesian coordinate transformation well-known to graphics programmers, which
takes the homogeneous triplet [w,z,y] is mapped to the point (z/w,y/w) of the
Cartesian plane. We can view this transformation as choosing among all equivalent
homogeneous triplets a weight-normalized representative (1,z/w,y/w) (the first co-
ordinate w being called the weight of the triplet). As a special case, homogeneous
triplets with weight w = 0 are mapped to the infinity points of the straight model.
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The analytic and spherical models are connected by the transformation that
takes the homogeneous triplet [w,z,y] to the point

('”),:L',y)
fw? + 22 + 2

on the unit sphere of R3.

Geometrically, these mappings corresponds to central projection of R? onto
the unit sphere, or onto the plane 7 tangent to the sphere at (1,0,0). See figure 4.
This projection takes a pair of diametrically opposite points p,p' of the sphere to the
point ¢ where the line pp’ meets the tangent plane . The great circle of the sphere
that is parallel to the plane 7 is by definition projected onto the line at infinity
of the straight model. Observe how this correspondence preserves points, lines, and
their incidence relationships.

spherical
model

straight
model

Figure 4. Central projection between the models of P,.

2. Advantages of projective geometry

Projective geometry and homogeneous coordinates have many well-known
advantages over their Cartesian counterparts. From the point of geometrical com-
puting, the following ones are particularly important:

o Simpler formulas. Projective geometry and homogeneous coordinates have many
well-known advantages over their Cartesian counterparts. For one thing, the use
of homogeneous coordinates generally leads to simpler formulas that involve only
the basic operations of linear algebra: determinants, dot and cross products,
matrix multiplications, and the like. All Euclidean and affine transformations,
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and all perspective projections, can be expressed as linear maps acting on the
homogeneous coordinates of points. For example, the Cartesian coordinates of
the point where the lines ax + by + ¢ = 0 and ra + sy + ¢t = 0 intersect are

(bt — cs, cr — at)

as — br

In homogeneous coordinates, the intersection of (a, b, ¢) and (r,s,t) is
[bt — cs, cr — at, as — br]

which is easily recognized as the cross product of the vectors («, b, ¢) and (r, s, t).
As this example shows, with homogeneous coordinates we can eliminate most
of the division steps in geometric formulas; the savings are usually enough to
offset the cost of handling an extra coordinate. The absence of division steps also
makes it possible to do exact geometric computations with all-integer arithmetic.

o Less special cases. Homogeneous coordinates let us represent points and lines at
infinity in a natural way, without any ad hoc flags and conditional statements.
Such objects are valid inputs in many geometric applications, and are generally
useful as “sentinels” in algorithms (in sorting, merging, list traversal, and so
forth). They also allow us to reduce the number of special cases in theorems and
computations. For example, when computing the intersection of two lines we
don’t have to check whether they are parallel. The general line intersection for-
mula will work even in this case, producing a point at infinity. This point can be
used in further computations as if it were any ordinary point. By contrast, in the
Euclidean or Cartesian models we must disallow this special case, or explicitly
test for it and handle it separately. Note that when we compose two procedures
or theorems, the number of special cases usually grows multiplicatively rather
than additively. Therefore, even a small reduction in the special cases of basic
operations — say, from three to two — will greatly simplify many geometric
algorithms.

o Unification and extension of concepts. Another advantage of projective geom-
etry is its ability to unify seemingly disparate concepts. For example, the dif-
ferences between circles, ellipses, parabolas, and hyperbolas all but disappear
in projective geometry, where they become instances of the same curve, the
non-degenerate conic.

As another example, all Euclidean and affine transformations — translations,
rotations, similarities, and so on — are unified in the concept of projective map,
a function of points to points and lines to lines that preserves incidence. As is
often the case with new unifying concepts, the class of projective maps turns
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out to include new interesting transformations, such as the perspective projec-
tions, that were not in any of the original classes. In fact, these maps cannot be
properly defined in Euclidean geometry, since they exchange some finite points
with infinite ones.

¢ Duality. Consider the one-to-one function ‘+’ that associates the point [w, z,y]

to the line (w, z,y), and vice-versa. This mapping preserves incidence: if point p
is on line /, then line p* passes through point [*. The existence of such a map
ultimately implies that every definition, theorem, or algorithm of projective
geometry has a dual, obtained by exchanging the word “point” with the word
“line,” and any previously defined concepts by their duals. For example, the
assertion “there is a unique line incident to any two distinct points” dualizes to
“there is a unique point incident to any two distinct lines.”
This projective duality is an extremely useful tool, in theory and in practice.
Thanks to it, every proof automatically establishes the correctness of two very
different theorems, and every geometrical algorithm automatically solves two
very different problems. It turns out that a geometric duality with these proper-
ties can be defined only in the full projective plane. In the Euclidean plane one
can construct only imperfect dualities, that do not apply to certain lines and/or
points. The use of such pseudo-dualities often leads to unnecessarily complicated
algorithms and proofs, with many spurious special cases [17].

3. Drawbacks of classical projective geometry

In spite of its advantages, the projective plane has a few peculiar features
that are rather annoying from the viewpoint of computational geometry. Some of
those problems, which were described in detail by Riesenfeld [19], are:

o The projective plane is not orientable. Informally, this means there is no way
of defining “clockwise” or “counterclockwise” turns that is consistent over the
whole plane P,. The reason is that a turn can be continuously transported over
the projective plane in such a way that it comes back to its original position
but with its sense reversed. For the same reason, it is impossible to tell whether
two triangles (ordered triplets of points) have the same or opposite handedness.
This limitation is quite annoying, since these two tests are the building blocks
of many geometric algorithms.

® Lines have only one side. If we remove a straight line from the projective plane,
what remains is a single connected set of points, topologically equivalent to
a disk. Therefore, we cannot meaningfully ask whether two points are on the
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same side of a given line. More generally, Jordan’s theorem is not true in the
projective plane, since a simple closed curve (of which a straight lineis a special
case) need not divide the plane in two distinct regions. Even if we consider only
the immediate neighborhood of a line, we still cannot distinguish its two sides,
since that neighborhood has the topology of a Mobius band. See figure 5.

Figure 5. The neighborhood of a straight line of P,.

o Segments are ambiguous. In projective geometry we cannot define the line seg-
ment connecting two points in a consistent way. Two points divide the line
passing through them in two simple arcs, and there is no consistent way to dis-
tinguish one from the other. It is therefore impossible to tell whether a point r
lies between two given points p, q.

e Directions are ambiguous. By the same token, we cannot define the direction
from point p to point ¢. In particular, each point at infinity lies simultaneously
in two opposite directions, as seen from a finite point. This property often makes
it hard to use points at infinity as “sentinels” in geometric algorithms and data
structures.

e There are no convez figures. The notion of convex set has no meaning in projec-
tive geometry. The problem is not just that the standard definition of convex set
(“one that contains every segment joining two of its points”) becomes meaning-
less, but in fact that there is no consistent way to distinguish between convex
and non-convex sets.

Of course, we can avoid all these problems by letting our definitions of segment,
direction, and so on depend on a special line Q. However, we would then have to
exclude certain “degenerate” cases, such as segments with endpoints on €. The
concepts thus defined will not be preserved by arbitrary projective maps and will
have uninteresting duals. In fact, this “solution” means giving up on projective
geometry, and retreating to the Euclidean world.



