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Preface to the Second Edition

Because the first edition of this introduction to a mathematical description of fluid
dynamics was so enthusiastically adopted by readers, the publishers encouraged
the first author to revise the first edition and add any new results and considera-
tions that are relevant to an introductory course. Because of this, the first author
introduced some new sections and remarks (e.g., Sections 4.3,5.6,5.7,7.9, etc.),
and in turn encouraged the second author (who had already written parts of Chap-
ter 7 for the first edition) to widen his participation in the book and to contribute
additional chapters touching upon some modern areas of the numerical treatment
of fluid flows to this new edition. However, even in these new chapters, the intro-
ductory character of the book has been maintained.

For more extensive representations of special areas of mathematical fluid dy-
namics, like modeling, theory or numerical methods, we refer the reader to some
monographs listed at the end of this book.

Again, we thank the publishers for their support, our colleagues for fruitful dis-
cussions, and Mrs. Monika Jampert for technical help with respect to some EIEX
problems. We also hope that readers of the new edition will again consider it useful
for enriching their scientific interests and for executing their work.

Hamburg and Brunswick, September 2008 Rainer Ansorge
Thomas Sonar
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Preface to the First Edition

Mathematical modeling is the process of representing problems from fields beyond
mathematics itself using mathematics. The subsequent mathematical treatment of
this model using theoretical and/or numerical procedures proceeds as follows:

1. Transition from the nonmathematical phenomenon to a mathematical descrip-
tion, which at the same time leads to the translation of problems formulated in
terms of the original problem into mathematical problems.

This task forces the scientist or engineer who intends to use mathematical tools
to:
— Cooperate with experts working in the field that the original problem
comes from. Thus, he/she has to learn the language of these experts and
to understand their way of thinking (teamwork).

— Create or accept an idealized description of the original phenomena, i.e.,
to ignore the properties of the original problem that are expected to be of
no great relevance to the questions under consideration. These simplifica-
tions are useful since they reduce the complexity of both the model and its
mathematical treatment.

— Identify structures within the idealized problem and replace these struc-
tures with suitable mathematical structures.

2. Treatment of the mathematical substitute.

This task normally requires:
— Independent activity from the person working on the problem, who must
work theoretically.

— Treatment of the problem using tools from mathematical theory.

— The solution of the particular mathematical problems that occur using
these theoretical tools; in other words, differential equations or integral
equations, optimal control problems, or systems of algebraic equations,
etc., must be solved. Numerical procedures are often the only way to do
this and to answer the particular questions of interest, at least approxi-
mately. The error in the approximate solution compared with the unknown
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Preface to the First Edition

so-called exact solution does not normally affect the answer to the original
problem a great deal, provided that the numerical method and tools applied
are of sufficiently high accuracy. In this context, it should be realized that
the quest for an exact solution does not make sense because of the ideal-
izations mentioned above, and because the initial data presented with the
original problem normally originate from statistics or from experimental
measurements.

3. Retranslation of the results.

The qualitative and quantitative statements obtained from the mathematical
model then need to be retranslated into the language in which the original
problem was formulated. In other words, the results must be interpreted with
respect to their real-world meaning. This process again requires teamwork with
the experts from the field in which the problem originated.

4. Model checking.

After retranslation, the results must be checked for relevance and accuracy, e.g.,
by performing experimental measurements. This work must be done by the
experts from the field in which the problem originated. If the mathematical
results coincide sufficiently well with the results from experiments stimulated
by the theoretical forecasts, the mathematical part is then completed, and a new
tool that can be applied by the physicists, engineers, etc., to similar situations
has been created.

On the other hand, if the logical or computational errors are nontrivial, the
model must be revised. In this situation, the gap between the results from the
mathematical model and the real results can only have originated from using
too much idealization during the modeling process.

The development of mathematical models not only stimulates new experiments
and leads to constructive prognostic (and hence technical) tools for physicists or
engineers, but it is also important from the point of view of the theory of cognition:
it allows us to understand the connections between different elements from an
unstructured set of observations; in other words, to create theories.

Mathematical descriptions have been used for centuries in various fields, such
as physics, engineering, music, etc. Mathematical models are also used in modern
biology, medicine, philology and economics, as well as in certain fields of art, like
architecture or oriental ornaments.

This book presents an introduction to models used in fluid mechanics. Impor-
tant properties of fluid flows can be derived theoretically from such models. We
discuss some basic ideas for the construction of effective numerical procedures.
Hence, all aspects of theoretical fluid dynamics are addressed: modeling, mathe-
matical theory and numerical methods.

We do not expect the reader to be familiar with a lot of experimental work.
A knowledge of some fundamental principles of physics, like conservation of mass,
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conservation of energy, etc., is sufficient. The most important idealization is (in
contrast to the molecular structure of materials) the assumption of fluid continua.

The reader will find the mathematics in the text easier to understand if he/she is
acquainted with some basic elements of:

Linear algebra

— Calculus

Partial differential equations

1

Numerical analysis

— The theory of complex functions

|

Functional analysis

Functional analysis only plays a role in the somewhat general theory of discretiza-
tion algorithms described in Chapter 6. In this chapter, the question of the exis-
tence of weak entropy solutions of the problems under consideration is discussed.
Physicists and engineers are normally not very interested in the treatment of this
problem. Nevertheless, we felt that it should be included in this work so that this
question not left unanswered. The lack of a solution immediately shows that a mod-
el does not fit reality if there is a measurable course of physical events. Existence
theorems are therefore important beyond the field of mathematics alone. However,
readers who are unacquainted with functional analytic terminology can of course
skip this chapter.

With respect to models and their theoretical treatment, as well as to the numer-
ical procedures that occur in Sections 4.1, 5.3, 6.3 and Chapter 7, a brief introduc-
tion to mathematical fluid mechanics as provided by this book can only present the
most basic facts. However, the author hopes that this overview will generate inter-
est in this field among young scientists, and that it will familiarize people working
in institutes and industry with some fundamental mathematical aspects.

Finally, I wish to thank several colleagues for suggestions, particularly Thomas
Sonar, who contributed to Chapter 7 when we organized a joint course for graduate
students,” and Dr. Michael Breuss, who read the manuscript carefully. Last but
not least, I thank the publishers, especially Dr. Alexander Grossmann, for their
encouragement.

1) Parts of Chapters 1 and 5 are translations
from parts of Sections 25.1, 25.2, 29.9 of:
R. Ansorge, H. Oberle: Mathematik fiir
Ingenieure, vol. 2, 2nd ed. Berlin: Wiley-VCH
2000.
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1
Ideal Fluids

1.1
Modeling by Euler’s Equations

Physical laws are mainly derived from conservation principles, such as conserva-
tion of mass, conservation of momentum, and conservation of energy.
Let us consider a fluid (gas or liquid) in motion, i.e., the flow of a fluid."” Let

ui(x, y,2,1)
u(x,y,2,t) = | uy(x,y,2,1t)
us(x, y,z,t)

be the velocity,” and denote by 0 = 9(x,y,2,t) the density of this fluid at point
x = (x,,2) and at time instant ¢.

Let us take out of the fluid at a particular instant ¢ an arbitrary portion of vol-
ume W(t) with surface 9W(t). The particles of the fluid now move, and assume
that W(t + h) is the volume formed at the instant ¢t + h by the same particles that
formed W(t) at time t.

Moreover, let ¢ = ¢(x, y, z, t) be one of the functions describing a particular state
of the fluid at time t at point x, such as mass per unit volume (= density), interior
energy per volume, momentum per volume, etc. Hence, [, wiy ¥ d(x. v, 2) gives the
full amount of mass or interior energy, momentum, etc., of the volume W(t) under
consideration.

We would like to find the change in fwu) ¢ d(x, y, z) with respect to time, i.e.,

d
T /(x,y,z, tyd(x,y, 2) . (1.1)
wit)
1) Flows of other materials can be included 2) Note that bold letters in equations normally
too, e.g., the flow of cars on highways, indicate vectors or matrices.

provided that the density of cars or particles
is sufficiently high.
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2 I 1 Ideal Fluids

We have

dt
w(t) W(t+h)

d o I -
—/¢(x.y,z,t)d(x,y,2)=}grgﬁ / o, t+ h)d(y1, y2,¥3)

- / oy, 20d(xy,2)
W(t)

where the change from W(t) to W(t + h) is obviously given by the mapping
y=x+h-u(xt)+o(h)
(7= (. v293)") -

The error term o(h) also depends on x but the property limy, o +0(h) = 0 if differen-
tiated with respect to space, provided that these spatial derivatives are bounded.

The transformation of the integral taken over the volume W(t + h) to an integral
over W(t) by substitution requires the integrand to be multiplied by the determi-
nant of this mapping, i.e., by

(1 + h@xul) hayul hazul
hu, (1+hoyu) hou, | +o(h)
h o us3 h Oyu3 (1+ho,us)

=1+h- (Oxur + Oyuy + Ozu3) + o(h)

=1+h-divu(x,t) +o(h) .

Taylor expansion of Vip(y, t + h) around (x, t) therefore leads to

d

pn / o(x,y,2,t) d(x,y,2) = / {Owp+ @ divu+ (u,Vo)} d(x,y,2) . (1.2)
wit) w(t)

Here, Vv denotes the gradient of a scalar function v, and (- , -) means the standard
scalar product of two vectors out of R3.
The product rule from differentiation gives:

pdivu+ (u, Vo) =div(p - u) ,
so that (1.2) leads to the so-called Reynolds’ transport theorem”
d :
n / o(x,y,2,t) d(x,y,2) = / {0wp +div(eu)} d(x,y,2) . (1.3)
w(r) wit)

As already mentioned, the dynamics of fluids can be described directly by conser-
vation principles and — as far as gases are concerned — by an additional equation of
state.

3) Osborne Reynolds (1842-1912); Manchester



1.1 Modeling by Euler's Equations

1. Conservation of mass: If there are no sources or losses of fluid within the sub-
domain of the flow under consideration, the mass remains constant.
Because W(t) and W(t+h) consist of the same particles, they have the same mass.

The mass of W(t) is given by fW(L) o(x. v,z 1) d(x,y, 2), and therefore

d
5 [ etarzndmya -0

wit)
must hold. Taking (1.3) into account (particularly for ¢ = g), this leads to the re-
quirement
/ {00 + div(ow)} d(x,y,2) = 0.
w()

Since this has to hold for arbitrary W(t), the integrand has to vanish:

| 910 + diviou) = 0. | (1.4)

This equation is called the continuity equation.

2. Conservation of momentum: Another conservation principle concerns the mo-
mentum of a mass, which is defined as

mass x velocity .

Thus,
/Qud%%@
wit)

gives the momentum of the mass at time ¢ of the volume W(t) and

describes the density of momentum.
The principle of the conservation of momentum, i.e., Newton’s second law

force = mass x acceleration,

then states that the change of momentum with respect to time equals the sum of
all of the exterior forces acting on the mass of W(3).

In order to describe these exterior forces, we take into account that there is a cer-
tain pressure p(x, t) at each point x in the fluid at each instant t. If n is considered to

3



4 I 1 Ideal Fluids

be the unit vector normal on the surface & W(t) of W(t), and it is directed outwards,
the fluid outside of W(t) acts on W() with a force given by

- / pndo (do = area element of 9 W(t)) .
o W(t)
Besides the normal forces per unit surface area generated by the pressure, there
are also tangential forces which act on the surface due to the friction generated by
exterior particles along the surface.

Though this so-called fluid viscosity leads to a lot of remarkable phenomena, we
are going to neglect this property at the first step. Instead of real fluids or viscous
Sfluids, we restrict ourselves in this chapter to so-called ideal fluids or inviscid fluids.
This restriction to ideal fluids, particularly to ideal gases, is one of the idealizations
mentioned in the Preface.

However, as well as exterior forces per unit surface area, there are also exterior

forces per unit volume — e.g., the weight.
Let us denote these forces per unit volume by k, such that Newton’s second law

leads to
d
T / qd(x,y,2) = / k(x,y,z,t) d(x,y,2) - / p-ndo.
w(t) w(t) ow(t)

Thus, by Gauss’ divergence theorem, we find

/ pnido /a,p d(x,y,2)
W) W(t)
pndo = / pnado | _ /6ypd(x,y,z)
S aw(y) Wit)
/ pnzdo /6zp d(x,y,2)
aw(Y) w(t)
= / Vp d(x,y,2) .
wit)
Together with (1.3),
div(g11)
Og+ | div(qau) | —k+Vp » d(x,y,2) =0
w(t) div(qsu)

follows.
Again, this has to be valid for any arbitrarily chosen volume W(t). If, moreover,

div(qi u) = (u, Vq;) +divu - g;
is taken into account,

oq+ (u, V) q+divu-q+Vp=k,



