Methods in ENZYMOLOGY

Volume 456

Mitochondrial Function, Part A: Mitochondrial Electron Transport Complexes and Reactive Oxygen Species

Edited by
William S. Allison

Mitochondrial Function, Part A: Mitochondrial Electron Transport Complexes and Reactive Oxygen Species

EDITED BY

WILLIAM S. ALLISON

Department of Chemistry and Biochemistry University of California San Diego, La Jolla, CA, USA

IMMO E. SCHEFFLER

Division of Biological Sciences - Molecular Biology University of California San Diego, La Jolla, CA, USA

Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 32 Jamestown Road, London NW1 7BY, UK

First edition 2009

Copyright © 2009, Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@ elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

For information on all Academic Press publications visit our website at elsevierdirect.com

ISBN: 978-0-08-087776-1

ISSN: 0076-6879

Printed and bound in United States of America
09 10 11 12 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID

Sabre Foundation

Mitochondrial Function,
Part A: Mitochondrial
Electron Transport
Complexes and Reactive
Oxygen Species

Editors-in-Chief

JOHN N. ABELSON AND MELVIN I. SIMON

Division of Biology California Institute of Technology Pasadena, California, USA

Founding Editors

SIDNEY P. COLOWICK AND NATHAN O. KAPLAN

CONTRIBUTORS

Boominathan Amutha

Department of Pharmacology and Physiology, UMDNJ, New Jersey Medical School, Newark, New Jersey, USA

Matthew C. Altman

The Medical Research Council Mitochondrial Biology Unit, Cambridge, United Kingdom

Nikolai P. Belevich

Institute of Biotechnology, University of Helsinki, Helsinki, Finland

Giancarlo A. Biagini

Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom

Egbert J. Boekema

Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands

Ulrich Brandt

Molecular Bioenergetics Group, Cluster of Excellence Frankfurt "Macromolecular Complexes," Medical School, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany

Hans-Peter Braun

Institute for Plant Genetics, Faculty of Natural Sciences, Universität Hannover, Hannover, Germany

Christine A. Butler

Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, New York, USA

Roosevelt V. Campbell

Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA

Joe Carroll

The Medical Research Council Mitochondrial Biology Unit, Cambridge, United Kingdom

xvi Contributors

Xiaowei Cen

Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA

Jing Chen

Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, The University of Florida, Gainesville, Florida, USA

Helena M. Cochemé

Institute of Healthy Ageing, University College London, London, United Kingdom, and The Medical Research Council Mitochondrial Biology Unit, Cambridge, United Kingdom

Andrew Dancis

Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Grazyna Debska-Vielhaber

Department of Neurology, University Magdeburg, Magdeburg, Germany, and Division of Neurochemistry, Department of Epileptology and Life & Brain Center, University Bonn, Bonn, Germany

Cindy E. J. Dieteren

Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, and Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Martina G. Ding

Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, USA

Jack E. Dixon

Departments of Pharmacology, Cellular and Molecular Medicine, and Chemistry and Biochemistry, and The Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA

Derek A. Drechsel

Department of Pharmaceutical Sciences, University of Colorado, Denver, Aurora, Colorado, USA

Stefan Dröse

Molecular Bioenergetics Group, Cluster of Excellence Frankfurt "Macromolecular Complexes," Medical School, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany

Bill Durham

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA

Contributors XVIII

Ian M. Fearnley

The Medical Research Council Mitochondrial Biology Unit, Cambridge, United Kingdom

Nicholas Fisher

Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom

Thomas D. Fox

Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, New York, USA

Terrence G. Frey

Department of Biology, San Diego State University, San Diego, California, USA

Alexander Galkin

The Wolfson Institute for Biomedical Research, The Cruciform Building, University College London, London, United Kingdom

Lois Geren

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA

François Godard

Institut de Biochimie et Génétique Cellulaires (CNRS), Université Victor Segalen, Bordeaux, France

Donna M. Gordon

Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA

Aaron M. Gusdon

Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, The University of Florida, Gainesville, Florida, USA

Mark A. Hink

Max Planck Institute for Molecular Physiology, Dortmund, Germany

Gregory Holmes-Hampton

Department of Chemistry, Texas A&M University, College Station, Texas, USA

Thomas R. Hurd

The Medical Research Council Mitochondrial Biology Unit, Cambridge, United Kingdom

Andrew M. James

The Medical Research Council Mitochondrial Biology Unit, Cambridge, United Kingdom

xviii Contributors

Werner J. H. Koopman

Department of Biochemistry, and Microscopical Imaging Centre, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Roman Kouřil

Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands

Alexei P. Kudin

Division of Neurochemistry, Department of Epileptology and Life & Brain Center, University Bonn, Bonn, Germany

Wolfram S. Kunz

Division of Neurochemistry, Department of Epileptology and Life & Brain Center, University Bonn, Bonn, Germany

Michael Lazarou

Department of Biochemistry, La Trobe University, Melbourne, Australia

Yanchun Li

Department of Neurology, Baylor College of Medicine, Houston, Texas, USA

Roland Lill

Institut für Zytobiologie and Zytopathologie, Philipps-Universität, Marburg, Germany

Kathryn S. Lilley

Department of Biochemistry, Cambridge System Biology Centre, University of Cambridge, Cambridge, United Kingdom

Paul A. Lindahl

Department of Biochemistry and Biophysics, and Department of Chemistry, Texas A&M University, College Station, Texas, USA

Dominika Malinska

Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland, and Division of Neurochemistry, Department of Epileptology and Life & Brain Center, University Bonn, Bonn, Germany

Douglas Marshall

The Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Clayton E. Mathews

Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, The University of Florida, Gainesville, Florida, USA

Matthew McKenzie

Department of Biochemistry, La Trobe University, Melbourne, Australia

Contributors

Ren Miao

Department of Chemistry, Texas A&M University, College Station, Texas, USA

Francis Millett

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA

Jessica Garber Morales

Department of Chemistry, Texas A&M University, College Station, Texas, USA

Michael P. Murphy

The Medical Research Council Mitochondrial Biology Unit, Cambridge, United Kingdom

Leo G. J. Nijtmans

Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Esther Nübel

Cluster of Excellence "Macromolecular Complexes," Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Goethe-Universität Frankfurt, Frankfurt, Germany

Debkumar Pain

Department of Pharmacology and Physiology, UMDNJ, New Jersey Medical School, Newark, New Jersey, USA

Manisha Patel

Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA

Guy A. Perkins

National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, California, USA

Aparna Rachamallu

Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA

Michael Radermacher

University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, Vermont, USA

Jean-Paul di Rago

Institut de Biochimie et Génétique Cellulaires (CNRS), Université Victor Segalen, Bordeaux, France

XX Contributors

Matthew I. Rardin

Gibson Lab, The Buck Institute for Age Research, Novato, California, USA

Peter R. Rich

Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, London, United Kingdom

Michael T. Ryan

Department of Biochemistry, La Trobe University, Melbourne, Australia

Scott A. Saracco

Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, New York, USA

Hermann Schägger

Cluster of Excellence "Macromolecular Complexes," Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Goethe-Universität Frankfurt, Frankfurt, Germany

Alex D. Sheftel

Institut für Zytobiologie and Zytopathologie, Philipps-Universität, Marburg, Germany

Wim Sluiter

Department of Biochemistry, Mitochondrial Research Unit, Erasmus MC, Dr. Molewaterplein 50-60, Rotterdam, The Netherlands

Oliver Stehling

Institut für Zytobiologie and Zytopathologie, Philipps-Universität, Marburg, Germany

Rosemary A. Stuart

Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA

Mei G. Sun

Department of Biology, San Diego State University, San Diego, California, USA

Stephanie Sunderhaus

Institute for Plant Genetics, Faculty of Natural Sciences, Universität Hannover, Hannover, Germany

Herman G. Swarts

Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Bernard L. Trumpower

Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, USA

Contributors

Marina L. Verkhovskaya

Institute of Biotechnology, University of Helsinki, Helsinki, Finland

Michael I. Verkhovsky

Institute of Biotechnology, University of Helsinki, Helsinki, Finland

Stefan Vielhaber

Department of Neurology, University Magdeburg, Magdeburg, Germany

Tatyana V. Votyakova

Department of Pediatrics, School of Medicine, University of Pittsburgh, Pennsylvania, USA

John E. Walker

The Medical Research Council Mitochondrial Biology Unit, Cambridge, United Kingdom

Ting Wang

Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA

Stephen A. Ward

Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom

Ashley J. Warman

Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom

Stanley J. Watowich

Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA

Steven A. Weinman

Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA

Sandra E. Wiley

Departments of Pharmacology, Cellular and Molecular Medicine, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA

Peter H. G. M. Willems

Department of Biochemistry and Microscopical Imaging Centre, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

L. Elly. A. de Wit

Department of Biochemistry, Mitochondrial Research Unit, Erasmus MC, Dr. Molewaterplein 50-60, Rotterdam, The Netherlands

xxii Contributors

Ilka Wittig

Cluster of Excellence "Macromolecular Complexes," Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Goethe-Universität Frankfurt, Frankfurt, Germany

Zibiernisha Wumaier

Cluster of Excellence "Macromolecular Complexes," Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Goethe-Universität Frankfurt, Frankfurt, Germany

Di Xia

Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA

Yuanzheng Yang

Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA

Shaoqing Yang

Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA

Ying Yin

Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA

Linda Yu

Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA

Chang-An Yu

Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA

Fei Zhou

Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA

PREFACE

Two volumes of Methods in Enzymology devoted to methods in mitochondrial research were published in 1995 and 1996 under the editorship of the late Guiseppe Attardi and Anne Chomyn. The emphasis of the earlier volumes was on mitochondrial biogenesis. Nevertheless, they also contained several articles describing methods for examining the structure and function of inner membrane complexes that participate in electron transport and ATP synthesis. In the intervening years, high-resolution crystal structures have been obtained for complexes II, III, and IV derived from the mitochondrial inner membrane. However, a crystal structure has yet to be obtained for a eukaryotic complex I (NADH: quinone oxidoreductase). Thus, several chapters in this volume of Methods in Enzymology describe alternative methods to characterize the structure and function of complex I. Other chapters are focused on the location and function of mitochondrial iron-sulfur complexes and the characterization of reactive oxygen species that are formed during mitochondrial electron transport in mammalian and yeast mitochondria.

Because a crystal structure has not been obtained for complex I isolated from mammalian or yeast mitochondria, several chapters in this volume (Chapters 1, 2, 6 and 7) describe methods that have been developed to examine structural characteristics of complex I. Other articles describe methods that have been developed to examine electron transport through complex I (Chapters 3 and 4) and to assay complex I in human cells (Chapter 9). Methods to characterize type II NADH: quinone oxidoreductases isolated from the parasites Plasmodium falciparum and Mycobacterium tuberculosis are described in Chapter 17. Three chapters describe methods for the isolation and characterization of electron transport super complexes from yeast (Chapters 10 and 11) and mammalian mitochondria (Chapter 8). Another chapter describes methods to examine the assembly of subunits encoded by mitDNA and nuclear DNA in the mitochondrial inner membrane of mammalian cells (Chapter 18). The use of ruthenium ion photooxidation and photoreduction to examine electron transfer in mitochondrial complex II and complex IV, respectively, are described in Chapters 5 and 28, respectively. Chapter 16 describes methods for examining mitochondrial mobility and protein diffusion within the mitochondrial matrix.

Although they were discovered in the 1970s, the biosynthesis and assembly iron-sulfur proteins have been examined more recently. Three chapters (Chapters 12, 14 and 15) describe methods to examine the

xxiv Preface

location, function, and assembly of iron-sulfur complexes in the mitochondrial inner membrane, whereas Chapter 13 describes the isolation and characterization an iron-sulfur protein located in the mitochondrial outer membrane.

Although they probably play a beneficial role at low concentrations, reactive oxygen species (ROS), which include superoxide anion (O⁵₂) and hydrogen peroxide (H₂O₂), excessive ROS formation in mitochondria is invariably associated with pathologic conditions. Chapters 19 to 27 describe methods that have developed to detect, induce, or control formation of ROS during electron transport in mammalian and yeast mitochondria.

The methods described in this volume should provide investigators with techniques that can be used or modified to examine mitochondrial electron transport complexes, the location and function of iron-sulfur proteins, and the detection and control of reactive oxygen species that are formed during electron transport in mitochondria.

WILLIAM S. ALLISON AND IMMO E. SCHEFFLER

VOLUME I. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME II. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME III. Preparation and Assay of Substrates Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME IV. Special Techniques for the Enzymologist *Edited by* SIDNEY P. COLOWICK AND NATHAN O. KAPLAN

VOLUME V. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VI. Preparation and Assay of Enzymes (Continued) Preparation and Assay of Substrates Special Techniques

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VII. Cumulative Subject Index Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VIII. Complex Carbohydrates

Edited by Elizabeth F. Neufeld and Victor Ginsburg

VOLUME IX. Carbohydrate Metabolism Edited by WILLIS A. WOOD

VOLUME X. Oxidation and Phosphorylation

Edited by RONALD W. ESTABROOK AND MAYNARD E. PULLMAN

VOLUME XI. Enzyme Structure Edited by C. H. W. Hirs

VOLUME XII. Nucleic Acids (Parts A and B)

Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE

VOLUME XIII. Citric Acid Cycle Edited by J. M. LOWENSTEIN

VOLUME XIV. Lipids Edited by J. M. LOWENSTEIN

VOLUME XV. Steroids and Terpenoids *Edited by* RAYMOND B. CLAYTON

VOLUME XVI. Fast Reactions

Edited by KENNETH KUSTIN

VOLUME XVII. Metabolism of Amino Acids and Amines (Parts A and B)

Edited by Herbert Tabor and Celia White Tabor

VOLUME XVIII. Vitamins and Coenzymes (Parts A, B, and C)

Edited by Donald B. McCormick and Lemuel D. Wright

VOLUME XIX. Proteolytic Enzymes

Edited by Gertrude E. Perlmann and Laszlo Lorand

VOLUME XX. Nucleic Acids and Protein Synthesis (Part C)

Edited by Kivie Moldave and Lawrence Grossman

VOLUME XXI. Nucleic Acids (Part D)

Edited by Lawrence Grossman and Kivie Moldave

VOLUME XXII. Enzyme Purification and Related Techniques

Edited by WILLIAM B. JAKOBY

VOLUME XXIII. Photosynthesis (Part A)

Edited by Anthony San Pietro

VOLUME XXIV. Photosynthesis and Nitrogen Fixation (Part B)

Edited by Anthony San Pietro

VOLUME XXV. Enzyme Structure (Part B)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XXVI. Enzyme Structure (Part C)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XXVII. Enzyme Structure (Part D)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XXVIII. Complex Carbohydrates (Part B)

Edited by VICTOR GINSBURG

VOLUME XXIX. Nucleic Acids and Protein Synthesis (Part E)

Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE

VOLUME XXX. Nucleic Acids and Protein Synthesis (Part F)

Edited by KIVIE MOLDAVE AND LAWRENCE GROSSMAN

VOLUME XXXI. Biomembranes (Part A)

Edited by Sidney Fleischer and Lester Packer

VOLUME XXXII. Biomembranes (Part B)

Edited by Sidney Fleischer and Lester Packer

VOLUME XXXIII. Cumulative Subject Index Volumes I-XXX

Edited by Martha G. Dennis and Edward A. Dennis

VOLUME XXXIV. Affinity Techniques (Enzyme Purification: Part B)

Edited by WILLIAM B. JAKOBY AND MEIR WILCHEK