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Preface

Organic semiconductors offer great promise for large area, low-end, lightweight,
and flexible electronics applications. Their technological edge lies not only in their
ease of processability but in their ability to flex mechanically. This makes them
highly favorable for implementation on robust substrates with non-conventional
form factor. Since its proof of concept in the early 1980s, progress in organic
electronics has been impressive with performance attributes that are competitive
with the inorganic counterparts. In particular, organic electronics is attractive
from the standpoint of complementing conventional silicon technology, thriving
in a different market domain that targets lower resolution, cost-effective mass
production items such as identification tags, smart cards, smart labels, and pixel
drivers for display and sensor technology.

While the material properties and processing technology for organic semicon-
ductors continue to advance and mature, progress in organic thin film transistor
(OTFT) integration and its scalability to large areas has not enjoyed the same pace.
A major driving force behind this technology lies in the ability to manufacture
low-end, and disposable electronic devices. This in turn demands a fabrication
process that allows high volume production at low cost. The process should be able
to produce stand-alone devices, device arrays, and integrated circuits of acceptable
operating speed, functionality, reliability, and lifetime. However, this comes with
its fair share of challenges, which we have attempted to address in this book. It is
intended as a text and/or reference for graduate students in Electrical Engineer-
ing, Materials Science, Chemistry, and Physics, and engineers in the electronics
industry.

Most of the results presented here stem from research conducted at the
Giga-to-Nano Labs, University of Waterloo, and the Xerox Research Centre of
Canada (XRCC), which granted access to its high quality, high performance, stable
organic semiconductor materials. We acknowledge the contributions of several col-
leagues in these laboratories whose expertise ranged from materials processing and
TFT integration to circuit and system design. We especially thank Prof. A. Sazonov
(University of Waterloo), Dr Yuri Vygranenko (Instituto Superior de Engenharia
de Lisboa), Dr D. Striakhilev (Ignis Innovation Inc.), Prof. P. Servati (University
of British Columbia), Dr S. Koul (General Electric), Dr M.R.E. Rad (T-Ray Sci-
ence), Dr C.-H. Lee (Samsung Electronics), Dr G. Chaji (Ignis Innovation Inc.),

Xl
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Preface

Dr K. Sakariya (Apple Computers), Dr S. Sambandan (PARC), Dr H.-]. Lee (DALSA
Inc.), Dr K. Wong (University of Waterloo), R. Barber (University of Waterloo), Dr
G.-Y. Moon (LG Chemicals), Dr I.W. Chan (ETRI).

We would also like to acknowledge the support of other colleagues: Prof. W.I.
Milne, Dr. P. Beecher, and Dr C.-W. Hsieh of University of Cambridge, A. Ahnood
and J. Stott of University College London, and Prof. G. Jabbour and Dr H. Haverinen
of Arizona State University and Oulu University.

The text has evolved from a series of courses offered to graduate students in
Electrical Engineering as well as doctoral dissertations covering different aspects of
large area electronics. The scope of this book is to advance OTFT integration from
an engineering perspective, and not material development, which is the strength of
chemical physicists. By assimilating existing materials, techniques and resources,
the book explores a number of approaches to deliver higher performance devices
and demonstrate the feasibility of organic circuits for practical applications. Much
of the material in the book can be presented in about 30 hours of lecture time. The
text begins with an assessment of organic electronics and market opportunities for
OTFT technology. The latter is further described in Chapter 2, examining device
architectures and material selection. Strategies to enable circuit integration are
presented in Chapter 3, while Chapter 4 explores optimization of gate dielectric
composition and structure. Interface engineering methodologies for OTFTs to
enhance the dielectric/semiconductor and contact/semiconductor interfaces are
described in Chapters 5 and 6. Chapter 7 presents examples of functional circuits
for active-matrix display and other applications. Chapter 8 concludes with a glimpse
of future challenges related to OTFT integration.

This book would not have been possible without the support of various insti-
tutions and funding agencies: University of Waterloo, Xerox Research Centre of
Canada, University College London, University of Cambridge, Nanyang Techno-
logical University, Natural Sciences and Engineering Research Council of Canada,
Ontario Centres of Excellence, and The Royal Society.

Cambridge, London, Toronto, Flora M. Li, Arokia Nathan,
Singapore 2010 Yiliang Wu, and Beng S. Ong



Glossary

Abbreviations

AC
AFM
Ag
Al

Ale; or AlO)

ALD
AMLCD
AMOLED
a-Si:H or a-Si
Au

BCB
C60
CMOS
CNT

CT

CTC

Cu

c-V
CVD
D6HT
DC
DFH-4T
DIP
DOS
Dpi
EDM
E-Paper
ERDA
FIGCUPC
F8T2
FTIR
GIXRD

alternating current

atomic force microscopy

silver

aluminum

aluminum oxide

atomic layer deposition

active-matrix liquid crystal display
active-matrix organic light emitting diode
amorphous silicon

gold

benzocyclobutene

fullerene

complementary metal oxide semiconductor
carbon nanotube

charge transfer

charge transfer complex

copper

capacitance—voltage characteristics
chemical vapor deposition
dihexyl-sexithiophene

direct current
diperflurorohexylquarter-thiophene
dual in-line package

density of states

dots per inch

electro-discharge machining

electronic paper

elastic recoil detection analyses
hexadecafluoro-phthalocyanine
poly(9,9'-dioctyl-fluorene-co-bithiophene)
fourier transform infrared spectroscopy
grazing-incidence X-ray diffraction
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HF hydrofluoric acid

HMDS hexamethyldisilazane

HOMO highest occupied molecular orbital

IC integrated circuit

ICP inductively coupled plasma

IEEE Institute of Electrical and Electronics Engineers
1JP inkjet printing

P ionization potential

-V current—voltage characteristics

LCD liquid crystal display

LUMO lowest unoccupied molecular orbital

MIS metal-insulator-semiconductor

MOS metal-oxide-semiconductor

MNB 2-mercapto-5-nitro-benzimidazole

Mo molybdenum

MOSFET metal oxide semiconductor field effect transistor
MTR multiple trapping and release model

N, nitrogen

NH; ammonia

NMOS n-channel or n-type metal oxide semiconductor
NW nanowire

O, plasma oxygen plasma

ODTS octadecyltrichlorosilane

OFET organic field effect transistor

OLED organic light emitting diode

OTFT organic thin film transistor

OTS or OTS-8 octyltrichlorosilane

P3HT poly(3-hexylthiophene)

PA polyacetylene

PANI polyaniline

PBTTT poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene)
PCBM phenyl-C61-butyric acid methyl ester

PECVD plasma enhanced chemical vapor deposition

PEDOT:PSS  poly(3,4-ethylene dioxythiophene) doped with polystyrene
sulfonic acid

PEN poly(ethylene naphthalate)

PET poly(ethylene terephthalate)

Ph.D. doctor of philosophy

Pl polyimide

PMMA poly(methyl methacrylate)

PPV poly(p-phenylene vinylene) or polyphenylene vinylene
PQT poly(3,3""-dialkylquaterthiophene)

Pt platinum

PT polythiophene

PTV poly(thienylene vinylene)
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PVA polyvinyl acetate or polyvinyl alcohol

R&D research and development

RCA clean a standard set of wafer cleaning steps; RCA = Radio Corporation
of America

RF radio frequency

RFID radio frequency identification

RIE reactive ion etching

SAM self-assembled monolayer

SiH4 silane

SiN, silicon nitride

SiO, silicon dioxide

SiO, silicon oxide

SnO; tin oxide

TFT thin film transistor

TiO, titanium oxide

[9AY ultraviolet

uw University of Waterloo

XPS X-ray photoelectron spectroscopy

XRCC Xerox Research Centre of Canada

ZnO zinc oxide

Mathematic Symbols

¢B injection barrier

Dy work function of the electrode (metal)

[N]/[S1] nitrogen to silicon ratio, to describe stoichiometry or composition
of SiN,

MFET field effect mobility

G gate capacitance per unit area

Cs storage capacitor

Eg band-gap energy

Jivax maximum switching frequency

8m transconductance

Ip drain current

Ig gate current

Tieak leakage current

Iorr off current

Ion on current

Ion/Iorr on/off current ratio

Is source current

IPg ionization potential of the semiconductor

L channel length

Rcontact contact resistance

S inverse subthreshold slope (V dec™!)

Xvii



XVl

Glossary

T transit time

Vig bottom-gate voltage
Vbp positive supply voltage
Vps drain-source voltage
Vas gate-source voltage
Von. Vso onset voltage or switch-on voltage
Vss negative supply voltage
Vr threshold voltage

Vg top-gate voltage

w channel width
Definitions

Definitions of selected terms cited from Wikipedia webpage.
http://en.wikipedia.org/wiki/Main_Page.

Alkanes (also Alkyl)

Charge transfer complex
(CT complex)

Conductive polymer (also
conducting polymer)

Chemical compounds that consist only of the elements
carbon (C) and hydrogen (H) (i.e., hydrocarbons),
wherein these atoms are linked together exclusively by
single bonds (i.e., they are saturated compounds)
without any cyclic structure (i.e., loops). An alkyl group
is a functional group or side-chain that, like an alkane,
consists solely of singly-bonded carbon and hydrogen
atoms.

An electron donor—electron acceptor complex,
characterized by electronic transition(s) to an excited
state. In this excited state, there is a partial transfer of
elementary charge from the donor to the acceptor. A
CT complex composed of the tetrathiafulvalene (TTF, a
donor) and tetracyanoquinodimethane (TCNQ, an
acceptor) was discovered in 1973. This was the first
organic conductor to show almost metallic
conductance.

Polymer that is made conducting, or “doped,” by
reacting the conjugated semiconducting polymer with
an oxidizing agent, a reducing agent, or a protonic
acid, resulting in highly delocalized polycations or
polyanions. The conductivity of these materials can be
tuned by chemical manipulation of the polymer
backbone, by the nature of the dopant, by the degree of
doping, and by blending with other polymers.
Conductive polymer is an organic polymer
semiconductor, or an organic semiconductor.



Conjugated polymer

Dielectric (also insulator)

Electrode (also contact)

Insulator (also dielectric)

Mobility (also carrier
mobility, field-effect
mobility, effective
mobility)

Glossary | XIX

A system of atoms covalently bonded with alternating
single and double carbon—carbon (sometimes
carbon—nitrogen) bonds in a molecule of an organic
compound. This system results in a general
delocalization of the electrons across all of the adjacent
parallel aligned p-orbitals of the atoms, which
increases stability and thereby lowers the overall
energy of the molecule.

A non-conducting substance, that is, an insulator.
Although “dielectric” and “insulator” are generally
considered synonymous, the term “dielectric” is more
often used when considering the effect of alternating
electric fields on the substance while “insulator” is
more often used when the material is being used to
withstand a high electric field. Dielectric encompasses
the broad expanse of nonmetals (including gases,
liquids, and solids) considered from the standpoint of
their interaction with electric, magnetic, of
electromagnetic fields. In this book, the terms
“dielectric” and “insulator” are used interchangeably.
An electrical conductor (e.g., metallization) used to
make contact with a nonmetallic part of a circuit (e.g., a
semiconductor). The gate/source/drain metal layer of
the TFT is referred to as an electrode. The connection
between the source/drain metal layer and the
semiconductor layer (i.e., when we speak of the
interface) is referred to as the “contact.” In this book,
the terms “electrode” and “contact” are used almost
interchangeably.

A material that resists the flow of electric current. It is
an object intended to support or separate electrical
conductors without passing current through itself. An
insulation material has atoms with tightly bonded
valence electrons. The term electrical insulation often
has the same meaning as the term dielectric.

The state of being in motion. Carrier mobility is a
quantity relating the drift velocity of electrons or holes
to the applied electric field across a material; this is a
material property. Field-effect mobility or effective
mobility describes the mobility of carriers under the
influence of the device structure in field-effect
transistors. Field-effect mobility is device-specific, not
material-specific, and includes effects such as contact
resistances, surface effects, and so on.
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Glossary
Organic compounds

Organic electronics (also
plastic electronics)

Organic semiconductor
(also polymer
semiconductor)

OTFT (also OFET)

Plastic

Polymer

Chemical compounds containing carbon-hydrogen
(C—H) bonds of covalent character.

A branch of electronics that deals with conductive
polymers, plasties, or small molecules. It is called
“organic” electronics because the polymers and small
molecules are carbon-based, like the molecules of
living things. This is as opposed to traditional
electronics which relies on inorganic conductors such
as copper or silicon.

Any organic material that has semiconductor
properties. Both short chain (oligomers) and long chain
(polymers) organic semiconductors are known. There
are two major classes of organic semiconductors,
which overlap significantly: organic charge-transfer
complexes, and various “linear backbone” polymers
derived from polyacetylene. This book focuses on the
investigation of polymer organic semiconductors; thus,
in most cases, the term “organic semiconductor” and
“polymer semiconductor” are used interchangeably.
An organic thin film transistor (OTFT) or organic field
effect transistor (OFET) is a field effect transistor using
an organic semiconductor in its channel.

A general term for a wide range of synthetic or
semi-synthetic polymerization products. Plastics are
polymers, that is, long chains of atoms bonded to one
another.

A substance composed of molecules with large
molecular mass composed of repeating structural
units, or monomers, connected by covalent chemical
bonds.
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