~ Roopak Sinha - Parthasarathi Roop
Samik Basu

Correct-by-

‘Construction

Approaches for
50C Design

&) Springer

Roopak Sinha ¢ Parthasarathi Roop * Samik

Correct-by-Construction
Approaches for SoC Design

Sk ey
at‘z/t)\: o W

@ Springer

Roopak Sinha Parthasarathi Roop

Electrical and Computer Engineering Electrical and Computer Engineering
The University of Auckland The University of Auckland
Auckland, New Zealand Auckland, New Zealand

Samik Basu

Department of Computer Science
Towa State University
Ames, [A, USA

ISBN 978-1-4614-7863-8 ISBN 978-1-4614-7864-5 (eBook)
DOI 10.1007/978-1-4614-7864-5
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013944687

© Springer Science+Business Media New York 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Correct-by-Construction Approaches
for SoC Design

Roopak: To Anaya and Dhrov.
Partha: To Bapa, Maa and Guruji.

Samik: To my parents.

Foreword

It is always a good idea to begin a foreword for a computer science book with
Moore’s law! Indeed, this self-fulfilling prediction has led to a miniaturization
such that 2012s processors have up to five billions transistors, such as the Intel’s
Xeon Phi. However, this miniaturization comes with a proportional complexity
price, no engineer being able to conceive a processor with that many transistors. It
was therefore natural to use a divide-and-conquer approach, which resulted first in
the advent of multi-core processors and system-on-a-chip (SoC) and finally multi-
processor-SoC (MPSoC). This is where the field of processor design (hardware)
meets the field of component-based design (software). In both fields, the issue is
quite simple: how can an engineer design a huge and complex system (be it an
MPSoC or a large software system) from simpler and already validated compo-
nents, possibly third-party? This looks very appealing, but it raises several crucial
challenges, which are precisely what this book is about: the design, verification, and
validation of systems composed of many components, such that global properties
can be preserved and such that mismatches of any kind between the components
can be avoided (mismatches either with respect to the control signals, to the clocks,
or to the data exchanged between the components). The methods and tools presented
in this book will prove essential for designing the next generation of MPSoCs, ever
more powerful, ever more embedded, and ever more reliable.

Grenoble, France Dr. Alain Girault

vii

Preface

A rapid surge in the consumer electronics revolution of the past decade may be
attributed to the advancement in the automated design techniques for systems-on-
chips (SoCs). SoCs are excellent metaphors for well-known computing terminolo-
gies such as abstraction and reuse, which have been in vogue for many decades
both in industry and in academia. The mobile phone stands out as the significant
benefactor of the abstraction and reuse approaches in computing. One key ingredient
for the success of the mobile phone has been not only the advancement of RF
technology but also the rapid evolution of the phone as a multi-functional, user
friendly device that can perform wide-ranging tasks from movie making, transport
planning to being a portable medical device. Would this have been possible without
rapid advancement in SoC design techniques that incorporated state-of-the-art
multicore processors, low-power design and many pre-verified components and
buses?

The impetus for this monograph has been twofold. Firstly, Partha came across
the reuse methodology manual (RMM) as a graduate student. RMM-like design
methodology, and its variants practiced in industry, has been very successful in
dealing with many challenges of SoC design. However, RMM and similar design
approaches state that the system-level verification effort is still a major challenge as
it requires significantly higher effort in comparison to other phases of SoC design.
This motivated Partha and Roopak in early 2004 to examine this issue. Roopak
worked on this problem from 2004 to 2008 and proposed the use of rigorous
techniques such as model checking to aid the system-level verification process.
They worked jointly with Samik who helped shape this research by leveraging
many interesting ideas from software engineering. This joint effort led to many
publications in embedded system conferences such as design automation and test in
Europe (DATE) and VLSI Design. This research and associated publications form
the main foundations of this book.

A second impetus of this monograph is motivated by the rapid adoption of SoCs
in safety-critical applications in robotics, automotive and medical devices. Here, a
major concern is the overall functional safety of the product, i.e., the device has to be
designed to consider all possible risks and safety functions that have been integrated

Preface

to mitigate these risks. We noticed that the research we undertook since 2004 may
be ideal not only for reducing the system-level verification effort but also for helping
safety analysis and associated certification.

While our work is already published and hence available to expert researchers,
we felt that a monograph on this topic of system-level verification of SoCs may
have wider interest. Firstly, we wanted to make these research results available
to researchers, designers and students alike. Hence, we embarked on a pedagogic
presentation of formal methods that is widely accessible. We also simplified the
process of requirement elicitation of SoCs through natural language-based boiler
plates. This aspect of our work was never published before and is a significant
addition to facilitate the adoption of formal methods in industry. Secondly, we
developed this monograph with practitioners in mind. ARM is one of the most
widely adopted platforms for SoCs (http://www.arm.com/community/soc/index.
php). Hence, we used ARM and AMBA-based examples throughout this text to
motivate our approach.

Last but not the least, our work has been accomplished not in isolation but due to
research efforts of many researchers, who have also published on related topics and
have proposed many concepts that we have either extended or reused. As it is often
stated, “we stood on the shoulder of other researchers”, to develop the proposed
methodology. We have carefully examined and presented the latest status of this
research on the use of formal methods in SoC design and system-level verification
(see Chap. 7 for a state-of-the-art review of related research). This may be helpful
for starting graduate students, SoC designers and researchers to access such related
research quickly.

This being the first version of the book, we envisage that there are some errors
and omissions. We welcome any feedback in this regard. We are also developing
supplementary material such as exercises and lecture notes for use of this text in
advanced undergraduate or postgraduate classes.

Organization and Reading Guide

This book is not a traditional book on formal methods or formal verification. In these
books, a set of formal techniques are described, in an algorithmic manner. Our book,
in contrast, is developed for engineers so that they may use a design methodology
that is based on sound mathematical principles. Hence, it is more a book on system
design rather than system analysis, though the latter is built into the design process.

The book is organized into seven chapters. Each chapter deals with some key
concepts related to the correct-by-construction design approach for SoCs. Figure 1
provides an overview of the chapters and the main ideas conveyed in them. Each
chapter has a set of key concepts (presented in cyan) and the main idea (presented
in red).

Preface xi

Chapter 1

- Mobile phone SoC
- RMM design flow
- Proposed flow

Chapter 2 Chapter 3 Chapter 4
- Temporal logics
- SoC architecture - Open systems - Requirements
- Buses - Closed systems - SoC Boilerplates
- Control/Data - Model checking - On-chip protocols
- FSMs - Module checking

S irchitectura Backgrou

Chapter 5 Chapter 6 Chapter 7
- Design - Converter
- Set-top box SoC definition - Requirements
- Clock mismatches - Control achieved - Models
Converter - Data mismatches - Analysis
- Algorithm

Fig. 1 Key concepts of the different chapters

Chapter | provides the overview of SoC design and explains one particular
approach based on the reuse methodology manual (RMM) [KBO02]. We then
motivate the need for the proposed approach, especially to tackle the problem
of system-level verification. The key concepts presented in this chapter include
the “inside view” of a mobile-phone SoC, the RMM design flow for SoCs and a
proposed design flow for the correct-by-construction approach. This chapter may
be viewed as the “overview/motivation” chapter.

Chapter 2 provides details of SoC internals, including key concepts such as the
SoC architecture based on ARM, internals of buses used, the need for capturing the
control-flow and data-flow in on-chip communication protocols of SoC components
(also called IPs). This chapter may be viewed as the “SoC architecture™ chapter.

Chapter 3 equips the reader with the necessary background material needed for
later chapters. Key concepts covered in this chapter include the distinction between
closed and open systems, temporal logic (to capture specifications), model checking
(to verify a closed system) and module checking (to verify open systems). This
chapter may be viewed as the “background” chapter.

xii Preface
Chapter 4 provides the concept of SoC boiler plates. These provide an approach
by which engineers can capture correctness criteria of an SoC at the system-
level using “structured English™ requirements. We then show how these can be
automatically mapped to temporal logic formula. This chapter also introduces a
type of finite state machine called synchronous Kripke structures (SKS). These are
used for the formal representation of on-chip communication protocols of the IPs.
This chapter may be viewed as the “requirements/specification” chapter.

Chapter 5 provides a SoC design approach, where the on-chip protocols are
described as SKS and requirements are captured as boiler plates. It then develops
an approach called oversampling to bridge the clock mismatches between IPs.
Finally, it uses an approach based on “converter synthesis” to propose the design
methodology. The concepts in this chapter are illustrated using a set-top box
example. This chapter may be viewed as the “correct-by-construction design
methodology™ chapter.

Chapter 6 provides further details of the converter synthesis algorithm. Key
concepts covered in this chapter include data-buftfers and data-related properties,
converter definition and control and the converter generation algorithm. We provide
classifications of the inputs and outputs of a converter. Then the converter is
formalized and its control actions are described using an example. The details of
this algorithm with an appropriate illustration appear in Appendix A. This chapter
may be viewed as “converter synthesis™ chapter.

Chapter 7 summarizes related work. We discuss the system-level verification
literature and SoC design literature. Key concepts covered in this chapter include
literature related to requirements, modelling and analysis.

Chapters 1-3 and 7 are self-contained and may be read in any order. Chapters
4-6, on the other hand, will make more sense if read in sequence. Here are some
possible/suggested reading orders:

* | =2=3=4=5= 6= 7. This is a very conventional flow and we have
organized the chapters so that a reader can read the book top-down using this
flow. This can also form the basis for any SoC design course, where these
chapters may be covered over one semester, in this sequence.

* | =7=3=2=4= 5= 6. This order allows the reader to get good
understanding of related work and the formal background (Chap.3), before
exploring the rest of the technical details. This is good for readers, who want
a good grasp of both the background and the formal methods before progressing
further.

* | =2=7=4= 5= 6. This order is suitable for more astute readers, who
would like to skip the introductory material related to model/module checking
and temporal logic. The contents of Chap. 7 can be suitably intertwined with the
other chapters. For example, when reading Chap. 4, related work on modelling
may be useful. Similarly, when reading Chaps. 5 and 6, related work on analysis
presented in Chap.7 may be useful.

Preface Xiil

The technical details of the converter generation algorithm are presented in
Chap. 6 and Appendix A. An algorithm for convertibility verification and associated
converter synthesis is presented in Appendix A. This forms the main basis of
the proposed design methodology. However, Chap.5 is fairly self-contained and
provides the key idea of SoC design at a high level. Hence, it may be feasible that
some readers may skip the technical details of Chap. 6 and Appendix A.

Auckland, New Zealand Roopak Sinha
Auckland, New Zealand Parthasarathi Roop
Ames, IA, USA Samik Basu

Acknowledgements

We would like to acknowledge the following individuals, who have been either our
collaborators, co-authors or people with whom we have discussed regarding the
proposed research.

e Dr. Alain Girault, INRIA, Grenoble

e Dr. Gregor Goessler, INRIA, Grenoble

« Dr. S. Ramesh, General Motors R&D, USA

« Prof. Arcot Sowmya, UNSW, Australia

* Prof. Zoran Salcic. University of Auckland. New Zealand
e Dr. Karin Avnit, UNSW, Australia

XV

Acronyms

+ SoC: System-on-a-chip. Plural: SoCs (systems-on-chip)
< [P: Intellectual property (block)

+ FSM: Finite state machine

* SKS: Synchronous Kripke structures

« CTL: Computation tree logic

« AMBA: Advanced microcontroller bus architecture

XX1

Contents

1 System-on-a-Chip Design ...ttt |
1.1 A Generic SOC Architectureooiiiiiiiiiiiiiiiee i, 2

1.2 Current Design FIOW ... 4

1.3 Proposed Design FIOW ...t 5
1.3.1 Motivation for the Book ... 6

1.3.2 Benefits of the Proposed Approach........................... 8

1.4 Organization of the Rest of the Book..................o .. 9

1.5 CoORCIUSIONS omsss s sumsemss & pastnsng s & s & 5 sai@means fas SEenes s EuweLas » 10

2 The AMBA SOCPIatformcccooiiviiiiiiiininiiiiiiiiaaiinaane. 11
2.1 The AMBA Standard 12
2.1l TetminOlOEY ... - - - comewes = 5 oominms s s 5 wmemmns 5 5 smsmines £ 5 sadmome 22t 12

2.1.2 AMBA BUSES ... corein s o smismionn 8 8 sisiniomis s 5 snismans s 5 5 smmons s s o0 15

2.2 Formal Modelling of AMBA SoCs ... 18
221 Control FIOw ..o 19

222 DataFlow 20

2.2.3 0 TIMING. et 22

224 CompOSIHONAIIEY oy semimsves snmsmnss srsmams s wassams s sass 22

2.3 CONCIUSIONS vus ssisrmimn s wansssins 55 o arasis §m 5 8 SHoma & SRR 5 5 ESHRF ST 4.6 e 22

3 Automatic Verification Using Model and Module Checking 25
3.1 Model CheCKing ... e ceaeans 26
3.1.1 Basic Model: Kripke Structure...............coovviiiiin.... 26

3.1.2 Example: Model of a Traffic Light Controller £.54

3.1.3 Specification Using Temporal Logic 27

3.1.4 Explicit Sate Model Checking ..., 33

3.2 Module:ChECKIRG :+ . susmusssmsmmamssve vamasms sy sommm s sainmmgs o s poasans 37
3.2.1 Tableau-Based Local Module Checking...................... 41

338 CONCIUSION v sowmmmvmmesmms s ey ST S eSS SRR VPR TS 54

Xvii

Xviii Contents
4 Models for SoCs and Specifications..................coooiiiiiiiiiiennann.. 55
4.1 IP Modelling Using Synchronous Kripke Structures 57
4.1.1 Synchronous Kripke Structurescooeeeeae... 57
4.1.2 Composition of Synchronous Kripke Structures 62
4.2 SoCBoilerplates.........coueiiiimiiiiiii i 64
4.2.1 Building a Meaningful Set of Boilerplates 66
4.2.2 SoC BoIler=-Plates. . . .cusmssus s s owssnws s s osmmamins s s posomess s gms 71
4.3 ConcluSiONS cosvisis sssavsss senammenass sisimisss saseaes s s ieeee s s o 71
5 SoC Design Methodology i, 73
5.1 Protocol Mismatches 74
5.2 Composition of Multi-clock IPs T A ST 76
=1 (. & (o1 < RPN SC ML S S R B 77
5.2.2 Clock AUtomataoouuumniiiii e 77
5.2.3 SKS Oversampling . co..:sscsmmmag s« simsonss s smmones s srsmsisns s 78
5.3 Design Methodology Using Protocol Conversion 81
54 CONCIUSIONS .o« v inmnassnisanesss s sssamns s s maessss sasomsss s §aaiiems s s 85
6 Automatic Protocol Conversion ... 87
6.1 Tlustrative Example ... 87
6.2 Modeling Data as Labels on Statesc.oooivinieiiieiiann.. 90
6.2.1 Data CONSIAINTSeuviieeeaniineaaaanaieeeennnre s 91
6.2.2 Control Constraintsoouuiiioieeiiiaiiiaaaaannnn. 94
6.3 Converters: Description and Control ... 94
6.3.1 I/0 Relationship Between Converter,

Environment and On-Chip Protocols 95
6:3.:21 Capabilities of the Converter.: . . sswws s s sawsss s s simesnss v eson 96
6.3.3 Types of Input/Output Signals of Converter 97
6.3.4 Description of Converteroooeeiiiieiiiiinnnnnn.. 99

6.3.5 Lock-Step Composition of Converter and
On-Chip Protocols..........ooiiiiiiiiii i 102
6.4 Generating Converters Using Module Checking...................... 105
6.y COcluding REMBIKS «.cwss v cmmmssl vre v St s psams sy shsi@n za s 106
7 Related Work and Outlook 107
7.1 System-Level VerifiCation.. . . suex s s svrmens 5o somosines s sswmsnss s sapomimn 107
o2 REQUITCMIBNES wsss s 5 sovimss s o vaiemns 05 Srvnass. s 5emiasss s uosuies 84 isast 108
7.3 Models and COompoOSItiONSooiiiiiiiiiii i, 109
7.3.1 Interface Modelling.......... ..o, 109
7.3.2 COMPOSILION ...ttt e e e e e e e e e e e 111
T4 ANAlYSIS - 112
7:4.1 Advanced TechRIGUES . . vuivon e s bhsssanss syssens s e smsnass s 114
7:8 The SOC DeSISn PIOCESS .uvessesssisawess s canainins ¢ fawsesis s s demismmssss 115
1.5:1 Systemi-Level DESIEN <« o svswmnnsos vomniis «srsmenssssarsnias i 115

7.5.2 Component-Based Designccooviiiiiiiiiiii. 116

Contents Xix

7.5.3 Platform-Based Design............ooooiiiiiiiiiiiiiiiiii 116

754 Desigh of Multi=clock SOCS .. .coresuss e sonmn s susmsns s s ssis 117

Ti6 CONCIUSIONS o+ i snswnws i s sumsmos s 4 ovnrmosss 3 usrmens s daaomas o 5 i s § sos 118
Appendix A Converter Generation Algorithm 121
Al IniBalization : ciceaess i cosmmsss shaemesss 5 sraammss s srvumss s sRemmmse.; & ki 121
A.2 Data Structure and Initializationl 123
A.3 Tableau Generation Algorithm...............coiiiiiiiiiiiiiii ... 124
A.3.1 Description of the Tableau Generation Algorithm 126

A4 Terminationoiii e 131
A.5 Converter Extraction AR SR Y. 133
A.6 The Reason for the Inclusion of AGtrue in W.....oooviviiiiiniini.. 134
AT COMPICRILY socninssviminame s namemsn s v paeesas ¥ 5 8500835 5 6 upamana s SHETER 3 135
A.8 Soundnessand Completeness. . o« s s:vrsss s ssrimmesssssvsssss sasvess s 136
TR O T TN G 575530015 Yoo 5.5, 000 4 T TSR BT T R S o A I S s P A S TS R T RS 137

Chapter 1
System-on-a-Chip Design

A rapid surge in the consumer electronics revolution of the past decade has been
fuelled by a design methodology that started in the mid 1990s called core based
design [GZ97]. During this period, hardware design methods based on logic
synthesis techniques [GDWL92] were exacerbating the design productivity gap
i.e., the productivity of human designers lagged behind the projections made by
Moore’s law. It was predicted that for an average engineer, completing a design for
a chip in the year 2001 would require around 500 years [KB02]. Hence, there was
a lot of impetus in the mid 1990s to develop alternative design techniques that were
inspired by the concept of design reuse that was well known for software. Reusable
software components, also called “abstract interfaces™, were introduced as early as
1977 [Par77]. Subsequently, Goldberg introduced the concept of object-oriented
programming as an alternative paradigm to structured programming. Ever since,
technologies such as CORBA, .NET, and more recently web-services encapsulate
a piece of software as a reusable component and provide a range of methods for
component reuse and composition [OSB11].

The hardware design community, around the early nineties, started exploring
ways to bridge the design productivity gap. The concept of core based design was
developed to reuse pre-designed and pre-verified cores such as microprocessors,
interface controllers, network controllers, ports, buses and timers. The main objec-
tive was to create a design using existing cores rather than creating a full-custom
design. Cores could be kept at different levels of abstractions such as:

1. A hard core is a pre-designed block with minimal scope for modification. It is
fully designed with placement and routing completed (physical design steps
following high level synthesis).

A soft core is a synthesizable HDL description.

A firm core is at an intermediate level between hard and soft cores. It can be in
register transfer level (RTL) or netlist form.

W

As the appetite for consumer electronic devices such as mobile phones increased,
time to market pressures also increased significantly. Hence, a design paradigm
for reusable cores that meet minimum quality standards [GLK"99] was needed.

R. Sinha et al., Correct-by-Construction Approaches for SoC Design, 1
DOI 10.1007/978-1-4614-7864-5_1, © Springer Science+Business Media New York 2014

