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Preface

The world is teeming with machines that grow crops, process our food, drive us to
work, assemble products, clean our homes, and perform thousands of other daily
tasks. They are complex systems built on a myriad of electronic, mechanic, and
software components, each one prone to malfunction and even fail at any given
time. Robust, fault tolerant control of such machines is key to guaranteeing their
performance and avoiding accidents. Robotic manipulators, in particular, are
especially important when it comes to robust, fault tolerant control. Our society
relies on these machines for a large variety of industrial operations; any
unscheduled downtime caused by a faulty component can have significant
economic costs—not to mention the consequences of a potential injury.

Robust and fault tolerant systems have been studied extensively by academic
and industrial researchers and many different design procedures have been
developed in order to satisfy rigorous robustness criteria. An important class of
robust control methods, introduced by G. Zames in 1980, is based on H .. theory.
The main concept behind this approach is the robustness of the control system to
internal uncertainties and exogenous disturbances. Hundreds of works were
written extending the seminal results obtained by Prof. Zames. Some of them are
sufficiently elegant and effective to be of value in industrial environments.
Transforming theory into practice, however, is not a trivial task, as the mathe-
matics involved in robust control can be daunting. This monograph proposes to
bridge the gap between robust control theory and applications, with a special focus
on robotic manipulators.

The book is organized in nine chapters. In Chap. 1 we present the experimental
robot manipulator system used throughout the book to illustrate the various control
methodologies discussed. We also present there the simulation and control envi-
ronment we use to develop and test the methodologies. The environment, named
CERob for Control Environment for Robots, is a freeware included with this book
and available at http://extras.springer.com. The remaining eight chapters are
divided in three parts. Part 1 (Chaps. 2-4) deals with robust control of regular,
fully-actuated robotic manipulators. Part 2 (Chaps. 5-6) deals with robust fault
tolerant control of robotic manipulators, especially the post-failure control
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problem. Finally, Part 3 (Chaps. 7-9) deals with robust control of cooperative
robotic manipulators.

In Chaps. 2, 3, and 4 we present model-based linear, non-linear, adaptive, and
neural network-based H.. controllers for robotic manipulators. Models based on
the Lagrange—Euler formulation and neural networks are used to enable robust
control of robots where performance, stability and convergence are guaranteed.
One interesting scenario in robot modeling is when the neural network works as a
complement of the Lagrange—Euler equations to decrease modeling errors. In these
chapters we also explore the use of output feedback controllers, motivated by the
fact that in some cases sensors are not available to measure the full array of
variables needed for robot control.

In Chaps. 5 and 6 we present strategies to control the position of underactuated
manipulators, or manipulators equipped with both regular (active) and failed
(passive) joints based on linear parameter-varying models and linear matrix
inequalities, and also on game theory. The objective in these chapters is to
demonstrate that the system is able to reject disturbances while achieving good
position tracking performance. For robotic systems subject to faults, we present a
fault tolerant methodology based on linear systems subject to Markovian jumps.
We describe in detail the design of H,,H., and mixed H,/H. trajectory-
following controllers for manipulators subject to several consecutive faults.

In Chaps. 7, 8, and 9 we consider actuated and underactuated cooperative
manipulators. One of the most important issues in the robust control of cooperative
manipulators is the relationship between disturbance rejection and control of
squeeze forces on the load, particularly when the manipulator is underactuated.

Throughout the book we illustrate the concepts presented with simulations and
experiments conducted with two 3-link planar robotic manipulators especially
designed to pose as fully-actuated or underactuated devices.

Sao Carlos, Brazil Adriano A. G. Siqueira
Sao Carlos, Brazil Marco H. Terra
Pittsburgh, USA Marcel Bergerman
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Chapter 1
Experimental Set Up

1.1 Introduction

The field of Robotics is, by its very nature, an experimental one. No robot control
methodology can be deemed to perform satisfactorily if it has not been validated
on an actual physical system. In this book we illustrate all control methods pre-
sented by applying them to custom-designed robotic manipulators.

The manipulators are two 3-link open-chain, serial link arms built by Ben
Brown, Jr. from Pittsburgh, PA, USA, which we name the UARMSs, or Unde-
rActuated Robotic Manipulators (Fig. 1.1). The two most salient features of these
manipulators are that their joint motors possess very low friction and are equipped
with on/off brakes, thus allowing us to simulate a variety of joint failure condi-
tions. We created an open source MATLAB®-based UARM simulator that readers
can utilize to validate the control methodologies presented throughout the chap-
ters. The simulator includes also the Matlab source code for all methods described.
This Control Environment for Robots (CERob) is in fact more than just a standard
simulator; in our laboratory, control methodologies can be validated in the virtual
manipulators and then transferred to the actual ones at the click of a button.

In the first part of this chapter we describe in detail the UARM hardware and its
dynamic model. In the second part we describe the basic functionality of CERob.
Specific details on CERob as it applies to particular controllers are presented in the
pertinent chapters.

1.2 UARM Experimental Manipulator
1.2.1 Hardware

Each UARM is a 3-link planar, open-chain, serial-link manipulator. They are
equipped with low-friction DC motors directly connected to the links, with
no gearboxes. When the motors are powered, the joints behave as regular

A. A. G. Siqueira et al., Robust Control of Robots, 1
DOI: 10.1007/978-0-85729-898-0_1, © Springer-Verlag London Limited 2011
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I Experimental Set Up

Fig. 1.1 UnderActuated
Robot Manipulator (UARM)

fully-actuated ones; and when they are not powered, the joints can move essen-
tially freely and dub as unactuated or passive joints. The manipulator’s configu-
ration (fully-actuated or underactuated) can then be defined at will in real time by
simply powering or not each joint. Additionally, the joints are equipped with
diaphragm-based on/off brakes, which can be used to simulate locking-type faults
or to enable underactuated manipulator position control. Joints are numbered from
1 to 3, with joint 1 fixed to a smooth marble table. A dummy load can be attached
to the end-effector’s cup-shaped housing to provide for meaningful manipulation
experiments. The entire system resides on a horizontal plane and runs on a thin air
film that reduces to practically zero the friction with the table. Pressurized air
pumps and computer-controlled solenoid valves complete the hardware of the
system.

Incremental encoders with quadrature decoding, located at the top of each
joint, are used to measure the relative angular joint positions. The angular
velocities are computed via numerical differentiation and low-pass filtering.
Such procedure is known to result in measurement noise and can therefore
lead to poor position control performance. This is one of our motivations to
use output feedback control laws, where only joint position measurements are
used.

An equipment board provides a mounting surface for the motor amplifiers,
valves and air pressure regulators for brake and flotation air, and a custom inter-
face board. Two feeding voltages are supplied by a power unit: 48 V/20 A for the
motors, and 24 V/1 A for the interface board. A kill switch (“emergency stop™)
mounted in a small yellow enclosure can be located remotely, and controls the
power supply to the interface board and amplifiers. The equipment board also
provides a location where the UARM can be secured for safe transport without
disconnecting it from the rest of the system. Figure 1.2 shows the complete sys-
tem, with the robot manipulator, the equipment board, the power supply unit, and
the control computer.

The communication between the control computer and the hardware is per-
formed by a PCI (Peripheral Component Interconnect) input—output board from
Motenc. This device is able to control up to eight servo motors simultaneously
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Fig. 1.2 Complete UARM
hardware setup

(eight robot joints). The Motenc board connects to the custom interface board via
two 50-conductor ribbon cables. The features available on this board include:

8 differential encoder inputs, 32-bit resolution;

8 analog outputs, +10 V range, 13-bit resolution:

8 analog inputs, =5 V range, 14-bit resolution;

100 digital I/O (68 inputs and 32 outputs) in four 50-pin headers, opto-22
compatible;

+5 V available on headers, fused (resetable), max current 2 A;
Programmable timer interrupts;

Watchdog timer;

Hardware board ID for multiple board applications;

Filters at digital inputs to remove high frequency noise; and
Hardware ESTOPs.

The designer can access the board /0 channels by using the d// library provided
by the manufacturer. Table 1.1 shows the MATLAB®-based functions we
developed to communicate with the UARM hardware. Most of the time only four
commands are necessary to control the robot: those to set the desired voltages, read
the current encoders’ values, reset the encoders, and activate or release the brakes,
at the same time activating or inhibiting the motors.

Table 1.1 MATLAB®-based functions for control of the UARM

Function Description

set_dac_all_stg([v] v2 v3)) Set the desired voltages to the DC motors
get_position Read joint encoders
set_encoder_one_stg(enc. value) Set encoder to the specified value

setbrakemotor(value) Activate/release brakes and activate/inhibit motors
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Electrical and mechanical details of the system are as follows:
1. Links

e Link length: 20.3 cm

e Arm length from center of joint 1 to center of tip: 60.96 cm
e Joint size: 76 mm (diameter) x 86 mm (height)

e Joint mass: 670 g

e Tip mass: 220 g (default, customized by user)

e Link mass: 30 g (excluding wires, air hoses, and connectors).

2. Joint motors

Model: Kollmorgen RBE-1213 brushless DC
Nominal voltage: 48 V CC

Winding resistance: 2.4 Q

Torque constant: 0.14 Nm/A

Peak torque: 2.8 Nm

Back EMF constant: 15 V/kRPM
Continuous stall torque: 0.35 Nm

Motor mass: 344 g

Rotor inertia: 0.0000148 kg m”.

3. Motor amplifiers

e Model: ElImo SBA 10/100H-4

e Peak current: 20 A

e Continuous current: 10 A

e Supply voltage: 20-90 V CC

e Current-to-voltage constant (adjustable): 1.61 A/V.

4. Brakes

Type: air actuated diaphragm

Pressure: 100 psi (700 kPa) max.

Valves: Clippard model EVO-3M, 24 VDC, 0.67 W
Torque: 2.8 Nm max.

5. Optical encoders

e Model: Hewlett Packard HEDS 9040-T00

e Disk: HEDS 6140-T08

Lines: 2000/revolution

e Counts: 8000/revolution after quadrature decoding.

6. Air bearings

e Orifice diameter: 0.36 mm
e Air gap: approx. 0.08 mm
e Air supply pressure: 100 psi (700 kPa) max.



