C# 2.0

Practical Guide
for Programmers

IESEVIER

& Michel de Champlain

Brian G. Patrick

M" . The Practical Guide Series.

HORGAN KAUFMANN

C# 2.0: Practical Guide
for Programmers

Michel de Champlain

DeepObjectKnowledge

Brian G. Patrick

Trent University

AMSTERDAM e« BOSTON e HEIDELBERG
LONDON e NEW YORK * OXFORD

PARIS » SAN DIEGO ¢ SAN FRANCISCO | 4 ®
SINGAPORE ¢ SYDNEY * TOKYO ['§

ELSEVIE Morgan Kaufmann is an imprint of Elsevier =~ MORGAN KAUFMANN PUBLISHERS

Senior Editor Rick Adams

Associate Editor Karyn Johnson
Publishing Services Manager Simon Crump

Project Manager Brandy Lilly

Cover Design Yvo Riezebos Design
Cover Image Photo by Steve Cole, Photodisc Green, Getty Images
Composition Cepha Imaging Pvt. Ltd.
Copyeditor Kolam Inc.

Proofreader Kolam Inc.

Indexer Kolam Inc.

Interior printer Maple Press

Cover printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
©2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior
written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk.
You may also complete your request on-line via the Elsevier homepage (http://elsevier.com) by
selecting “Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted.

ISBN: 0-12-167451-7
For information on all Morgan Kaufmann publications, visit our Web site at www.mkp.com

Printed in the United States of America
0807060504 54321

Praise for C# 2.0: Practical Guide for Programmers!

Great book for any C# developer! It describes the basic programming language with EBNF
notation and provides a number of practical programming tips and best practices on
program design that enable you to utilize the C# language features effectively.

- Adarsh Khare, Software Design Engineer, Microsoft

C# 2.0: A Practical Guide provides an amazing breadth of information in a compact and
efficient format, with clear and concise writing and useful code examples. It cuts right to the
core of what you need to know, covering every aspect of the C# language, an introduction
to the .NET API, and an overview of pertinent object-oriented concepts. This book tops my
recommendation list for any developer learning C#.

- David Makofske, Principal Consultant/Architect, Akamai Technologies

This book is essential for programmers who are considering system development using G#.
The two authors have masterfully created a programming guide that is current, complete,
and useful immediately. The writing style is crisp, concise, and engaging. This book is a
valuable addition to a C# programmer’s library.

- Edward L. Lamie, PhD, Director of Educational Services, Express Logic, Inc.

At last, a programming language book that provides complete coverage with a top-down
approach and clear, simple examples! Another welcome feature of this book is that it
is concise, in the tradition of classics such as Kernighan and Ritchie. The new book by
De Champlain and Patrick is the best introduction to C# that I've seen so far.

- Peter Grogono, Professor and Associate Chair of Computer Science, Concordia
University

The book covers the basic and the advanced features of a relatively new and well established
programming language, C#. A truly Object Oriented style is used throughout the book in
a consistent manner. C# and Object Oriented concepts are well illustrated through simple
and concise examples to hold the reader’s attention. A very well-written book.

- Ferhat Khendek, PhD, Research Chair in Telecommunications Software Engineering,
Concordia University

C# 2.0: Practical Guide
for Programmers

The Morgan Kaufmann Practical Guides Series
Series Editor: Michael J. Donahoo

TCP/IP Sockets in C#: Practical Guide for Programmers
David Makofske, Michael J. Donahoo, and Kenneth L. Calvert

Java Cryptography Extensions: Practical Guide for Programmers
Jason Weiss

JSP: Practical Guide for Java Programmers
Robert J. Brunner

JSTL: Practical Guide for JSP Programmers
Sue Spielman

Java: Practical Guide for Programmers
Zbigniew M. Sikora

The Struts Framework: Practical Guide for Java Programmers
Sue Spielman

Multicast Sockets: Practical Guide for Programmers
David Makofske and Kevin Almeroth

TCP/IP Sockets in Java: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

TCP/IP Sockets in C: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

JDBC: Practical Guide for Java Programmers

Gregory D. Speegle

For further information on these books and for a list of forthcoming titles,
please visit our website at http://www.mkp.com/practical

To Héléne, the air that | breathe
— Michel

With love to my parents, Lionel and Chrissie
— Brian

Preface

Writing a short book on a comprehensive programming language was most definitely a
challenge. But such was our mandate and such is C#.

The C# programming language was first released in 2000 and has quickly established
itself as the language de rigueur for application development at Microsoft Corpora-
tion and other software houses. It is a powerful language based on the paradigm of
object-orientation and fully integrated with the Microsoft .NET Framework. Hence, C# is
architecturally neutral and supported by a vast library of reusable software.

To describe all minutiae of the C# language or to indulge in all facets of the .NET
Framework would require a tome or two. Yet the authors realize that experienced soft-
ware programmers are not looking to plough through extraneous detail but are focused
on extracting the essentials of a language, which allow them to commence development
quickly and confidently. That is our primary objective.

To realize this objective, we followed the ABCs of writing: accuracy, brevity, and
completeness. First and foremost, care has been taken to ensure that the terminology and
the discussion on the syntax and semantics of C# are consistent with the latest language
specifications, namely C# 2.0. For easy reference, those features that are new to C# 2.0 are
identified in the margins.

Second, for the sake of brevity, we strike at the heart of most features of C# with
little digression, historical reflection, or comparative analysis. Although the book is not
intended as a tutorial on object-oriented design, a few tips on good programming practice
are scattered throughout the text and identified in the margins as well.

Finally, all principal features of the C# programming language are covered, from basic
classes to attributes. The numerous examples throughout the text, however, focus on the
most natural and most common applications of these features. [t is simply not possible
within the confines of two hundred pages to examine all permutations of C#.

XV

Xvi Preface =

This practical guide emerged from the experiences of the first author in teaching,
training, and mentoring professional developers in industry and graduate students at
university on the use of the C# language. Its organization is therefore rooted in several
C# jump-start courses and one-day tutorials with an intended audience of experienced
programmers. Although some background in object-oriented technology is ideal, all
object-oriented features are reviewed in the broader context before they are described
with respect to their implementation in C#.

In short, C# 2.0: Practical Guide for Programmers rests its hat on three hooks:

m Provide a concise yet comprehensive explanation of the basic, advanced, and latest
features of the C# language. Each feature is illustrated with short, uncluttered exam-
ples. To ensure that code is error-free, the large majority of examples have been
automatically and directly extracted from source code that has been verified and
successfully compiled.

m Cover the essentials of the .NET Framework. Modern programming languages like
Java and C# are supported by huge application programming interfaces (APIs) or
frameworks in order to tackle the flexibility and complexity of today’s applications.
Although the focus of this book is on the C# language and not on the .NET Framework,
we would be remiss to omit a basic discussion on the core functionalities of the .NET
libraries. Any greater depth, however, would far exceed our mandate.

® Include a refresher on object-oriented concepts. The C# language is fully object-
oriented, replete with a unified type system that encapsulates the full spectrum of
types, from integers to interfaces. In addition to classes, the concepts of inheritance
and polymorphism are given their share of proportional representation as two of the
three tenets of object-oriented technology.

Organization of the Book

The book is organized into ten concise chapters and two appendices. Chapter 1 introduces
the C# programming language and the .NET Framework. It also outlines a small project that
is used as the basis for the exercises at the end of most chapters. This project is designed
to gradually meld the features of the C# language into a comprehensive solution for a
practical problem.

Unlike in books that present a programming language from the bottom up, Chap-
ters 2, 3, and 4 immediately delve into what we consider the most fundamental, though
higher-level, concepts of C#. Chapter 2 begins our discussion with classes and objects,
the first of the three tenets of object-oriented technology. We demonstrate how classes
are defined as an amalgam of behavior and state, how objects are created, and how access
to classes and to class members is controlled. Namespaces are also described as an impor-
tant aspect of “programming in the large” and how they are used to organize classes into
logical groups, to control name contlicts, and to ease the integration and reuse of other
classes within applications.

m Preface xvii

A fuller exposé on the basic class members of C# follows in Chapter 3: methods
that define behavior and data members that define state. Constructors, destructors, and
parameter passing by value and by reference are also covered. Chapter 3 concludes with
an important discussion on class reuse and how classes derive, refine, and redefine their
behavior and state via inheritance, the second tenet of object-oriented programming. We
compare inheritance with aggregation (composition) and offer a few guidelines on their
appropriate use.

The unified type system of C# is presented in Chapter 4, showing how value and ref-
erence types are derived from the same root class called Object. All value types, including
nullable types, are fully described, along with a brief introduction to the basic notion of
a reference type. The Object class itself provides an excellent vehicle to introduce poly-
morphism (the third tenet of object-oriented programming), virtual methods, and cloning
using deep and shallow copying. The chapter ends with a presentation of two predefined
but common classes for arrays and strings.

In Chapters 5 and 6, the rudiments of C# expressions and statements are reviewed
with numerous short examples to illustrate their behavior. Expressions are built from arith-
metic, logical, relational, and assignment operators and are largely inspired by the lexicon
of C/C++. Because selection and iterative statements, too, are drawn from C/C++, our pre-
sentation is terse but comprehensive. However, whenever warranted, more time is devoted
to those features, such as exceptions and the exception-handling mechanism of C#, that
bolster its reliability and robustness.

Chapter 7 extends our discussion on the reference types that were first introduced
in Chapter 4. These advanced reference types include delegates, events, abstract classes,
and interfaces. New features such as delegate inferences and anonymous methods are
also covered. In this chapter, we carefully distinguish between the single inheritance of
classes and the multiple implementation of interfaces. Polymorphism, first mentioned with
respect to the Object root class, is illustrated once again with a comprehensive example
based on a hierarchy of counter-classes and interfaces. The two accessors in C#, namely
properties and indexers, are also presented, noting the latest specifications for property
access modifiers.

The last three chapters (8, 9, and 10) shift their focus away from the program-
ming language concepts of C# and examine some of the basic but indispensable fea-
tures of the .NET Framework. Chapter 8 extends the notion of class reuse with a look
at the different types of predefined collections and their constructors and iterators.
Although not associated with the .NET Framework itself, one of the newest features
of C# is generic classes (or templates) and is presented as a natural counterpart to
collections.

Our discussion on resource disposal begun in Chapter 3 is rounded out in
Chapter 9 along with input/output and threads. Input/output is a broad topic and is limited
here to representative 1/0 for binary, bytes, and character streams. Threads, on the other
hand, is a challenging topic, and the synchronization mechanisms required to support con-
current programming are carefully explained with several supporting examples. Finally,
Chapter 10 examines the use and collection of metadata using reflection and attributes,
both pre- and user-defined.

xviii Preface =

The first of the two appendices summarizes the grammatical rules of the C# language
using EBNF notation. The second appendix provides an abridged list of the common XML
tags used for the automatic generation of web documentatijon.

Source Code Availability

The code for most examples and all exercises of each chapter is available and maintained
at the website www,DeepObjectKnowledge.com.

Acknowledgments

Any book goes through a number of incarnations, but none is more important than that
based on the constructive and objective feedback of its reviewers. Much improvement
on the organization and technical content of the book is due to their invaluable input,
and our sincere thanks are extended to Gerald Baugartner (Ohio State University), Eric
Gunnerson (Microsoft Corporation), Keith Hill (Agilent Technologies), Adarsh Khare
(Microsoft Corporation), David Makofske (Akamai Technologies), and Mauro Ottaviani
(Microsoft Corporation). Over the past year, we have also received timely advice and
ongoing encouragement from the kind staff at Morgan Kaufmann and Kolam. We acknowl-
edge their support with a special “tip of the cap” to Rick Adams, Mona Buehler, Karyn
Johnson, and Cara Salvatore.

Finally, we warn all potential authors that writing a book is a wonderful way to
while away the weeks and weekends. Unfortunately, these precious hours are spent apart
from our families, and it is to them that we extend our deepest appreciation for their
understanding, patience, and unconditional love.

We hope in the end that you enjoy the book. We hope that it reads well and provides
a solid introduction to the C# language. Of course, full responsibility for its organization
and content rests with the authors. And with that in mind, we defer to you, our reader, as
our ultimate source for both improvement and encouragement.

Michel de Champlain
mdec@eepObjectKnowledge . com

Brian G. Patrick
bpatrick@trentu.ca

® Preface XX

About the Authors

Michel de Champlain is the President and Principal Architect of DeepObjectKnowledge
Inc., a firm that provides industry with mentoring and training support in object tech-
nologies. Michel holds a Ph.D. in Software Engineering from the Ecole Polytechnique de
Montréal and has held university appointments at the Collége Militaire Royal de Saint-
Jean, the University of Canterbury in New Zealand, and Concordia University in Montréal.
He has also been aregular invited speaker at the Embedded Systems Conference for the last
fourteen years. Working in close collaboration with industry as well as academia, Michel
has trained thousands of people throughout Canada, the United States, Europe, and down
under in object-oriented analysis, design, and implementation. His current research inter-
ests include object-oriented languages, frameworks, design patterns, compilers, virtual
machines, and real-time microkernels.

Brian G. Patrick is an Associate Professor of Computer Science/Studies at Trent University
in Peterborough, Ontario. He first met Michel as a colleague at the Collége Militaire Royal
de Saint-Jean and has developed a close working relationship with Michel over the years.
Brian earned his Ph.D. in Computer Science from McGill University in Montréal, where he
later completed an M.B.A. in Finance and International Business. His research interests
have included heuristic search, parallel algorithms, and software reuse. He is currently
investigating job scheduling schemes for parallel applications.

Contents

Preface xv

1 Introducing C# and .NET 1
1.1 WhatlsC#? 1
1.2 What Is the .NET Framework? 2
1.2.1 The .NET Virtual Machine: Common Language
Runtime 4
1.2.2 The .NET Virtual Code: Intermediate Language 4
1.2.3 The .NET Assemblies: Applications and/or
Components 4
1.3 Project Exercise 5
1.4 Syntax Notation 6

2 Classes, Objects, and Namespaces 9
2.1 Classes and Objects 10
2.1.1 Declaring Classes 10
2.1.2 Creating Objects 11
2.2 Access Modifiers 12
2.2.1 Controlling Access to Classes 12
2.2.2 Controlling Access to Class Members 12
2.3 Namespaces 14
2.3.1 Declaring Namespaces 14
2.3.2 Importing Namespaces 16
2.3.3 Controlling the Global Namespace 17
2.3.4 Resolving Namespace Conflicts 18

Contents

2.4

2.5

Compilation Units 19

2.4.1 Presenting a Complete C# Program 19

2.4.2 Declaring Partial Classes 21

Compilation and Execution 22

2.5.1 Using Assemblies for Separate Compilation 23
2.5.2 Revisiting Access Modifiers 24

2.5.3 Adding XML Documentation 26

Class Members and Class Reuse 29

3.1

3.2

3.3

Fields and Methods 29

3.1.1 Invoking Methods 30

3.1.2 Accessing Fields 32

3.1.3 Declaring Constructors 3?2

3.1.4 Declaring Destructors 36

Parameter Passing 37

3.2.1 Passing Arguments by Value 37

3.2.2 Passing Arguments by Reference 38

3.2.3 Passing a Variable Number of Arguments 41
3.2.4 Using the this Reference 42

3.2.5 Overloading Methods 45

Class Reuse 45

3.3.1 Using Aggregation 46

3.3.2 Using Inheritance 46

3.3.3 Comparing Aggregation and Inheritance 50
3.3.4 Using Protected Methods 51

Unified Type System 55

4.1
4.2

4.3
4.4
4.5
4.6

4.7

Reference Types 56

Value Types 56

4.2.1 Simple Value Types 57

4.2.2 Nullable Types 58

4.2.3 Structure Types 60

4.2.4 Enumeration Types 61

Literals 63

Conversions 64

Boxing and Unboxing 66

The Object Root Class 67

4.6.1 Calling Virtual Methods 67

4.6.2 Invoking the Object Constructor 69
4.6.3 Using Object Instance Methods 69
4.6.4 Using Object Static Methods 75
Arrays 76

4.7.1 Creating and Initializing Arrays 77

m Contents X1

4.7.2 Accessing Arrays 78
4.7.3 Using Rectangular and Jagged Arrays 78
4.8 Strings 79
4.8.1 Invoking String Methods 80
4.8.2 Concat, Index0f, and Substring Methods 80
4.8.3 The StringBuilder Class 81

Operators, Assignments, and Expressions 83
5.1 Operator Precedence and Associativity 83
5.2 Assignment Operators 84
5.2.1 Simple Assignment 84
5.2.2 Multiple Assignments 86
5.3 Conditional Operator 86
5.4 Null Coalescing Operator 87
5.5 Conditional Logical Operators 88
5.6 Logical Operators 89
5.6.1 Logical Operators as Conditional Logical Operators 90
5.6.2 Compound Logical Assignment Operators 91
5.7 Equality Operators 92
5.7.1 Simple Value Type Equality 92
5.7.2 Object Reference and Value Equality 93
5.8 Relational Operators 94
5.8.1 Type Testing 95
5.9 Shift Operators 96
5.9.1 Compound Shift Assignment Operators 97
5.10 Arithmetic Operators 97
5.10.1 Multiplicative Operators 97
5.10.2 Additive Operators 98
5.10.3 checked/unchecked Operators 99
5.10.4 Compound Arithmetic Assignment Operators 100
5.11 Unary Operators 101
5.11.1 Prefix and Postfix Operators 102
5.11.2 Explicit Casts 103
5.12 Other Primary Operators 103
5.13 Overloadable Operators 104

Statements and Exceptions 107

6.1 Block Statement 107

6.2 Declaration Statements 108

6.3 Embedded Statements 109
6.3.1 Expression and Empty Statements 109
6.3.2 Selection Statements 110

Contents

6.4

6.3.3 Iteration Statements 112

6.3.4 Jump Statements 114

6.3.5 checked/unchecked Statements 116
6.3.6 lock and using Statements 116
Exceptions and Exception Handling 117

6.4.1 WhatIs an Exception? 117

6.4.2 Raising and Handling Exceptions 118
6.4.3 Using the throw Statement 119

6.4.4 Using the try-catch Statement 121
6.4.5 An Extended Example 124

7 Advanced Types, Polymorphism, and Accessors 129

7.1

7.2

7.3

7.4

7.5

7.6
7.7
7.8

Delegates and Events 130

7.1.1 Using Delegates for Callbacks 130

7.1.2 Using Delegates for Events 133

7.1.3 Using Delegates for Anonymous Methods 135
7.1.4 Using Delegate Inferences 136

Abstract Classes 136

7.2.1 Declaring Abstract Classes 136

7.2.2 Implementing Abstract Classes 137

7.2.3 Using Abstract Classes 138

Interfaces 138

7.3.1 Declaring Interfaces 139

7.3.2 Implementing Interfaces 140

7.3.3 Using Interface Methods 141

Polymorphism and Virtual Methods 143

7.4.1 Using the Modifiers override and virtual 143
7.4.2 Adding and Removing Polymorphism 145
7.4.3 Using Dynamic Binding 146

Properties 150

7.5.1 Declaring get and set Accessors 150

7.5.2 Declaring Virtual and Abstract Properties 151
7.5.3 Declaring Static Properties 153

7.5.4 Declaring Properties with Accessor Modifiers 154

Indexers 155
Nested Types 157
Other Modifiers 159

8 Collections and Generics 163

8.1

Collections 163
8.1.1 Cloning Collections 165
8.1.2 Using List-Type Collections 165

8.2

u Contents

8.1.3 Using Dictionary-Type Collections 173

8.1.4 Using Iterator Blocks and yield Statements 178
Generics 180

8.2.1 Defining Generics 181

8.2.2 Declaring Generic Objects 183

9 Resource Disposal, Input/Output, and Threads 185

9.1
9.2

9.3

Resource Disposal 185

Input/Output 188

9.2.1 Using Binary Streams 188

9.2.2 Using Byte Streams 190

9.2.3 Using Character Streams 191

9.2.4 Reading XML Documents from Streams 192
Threads 193

9.3.1 Examining the Thread Class and Thread States 193

9.3.2 Creating and Starting Threads 194
9.3.3 Rescheduling and Pausing Threads 195

9.3.4 Suspending, Resuming, and Stopping Threads 196

9.3.5 Joining and Determining Alive Threads 198
9.3.6 Synchronizing Threads 200

10 Reflection and Attributes 211
10.1 Reflection 211

10.1.1 Examining the Reflection Hierarchy 212
10.1.2 Accessing Assemblies 212

10.2 Attributes 215

10.2.1 Using Attributes for Exception Serialization 216
10.2.2 Using Attributes for Conditional Compilation 217
10.2.3 Using Attributes for Obsolete Code 218

10.2.4 Defining User-Defined Attributes 218

10.2.5 Using User-Defined Attributes 220

10.2.6 Extracting Attributes Using Reflection 221

10.3 Where to Go from Here 223

A C# 2.0 Grammar 227

Al

Lexical Grammar 227

A.1.1 Line Terminators 228

A.1.2 White Space 228

A.1.3 Comments 228

A.1.4 Tokens 228

A.1.5 Unicode Character Escape Sequences 228
A.1.6 Identifiers 228

Xiii

