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Praise for C# 2.0: Practical Guide for Programmers!

Great book for any C# developer! It describes the basic programming language with EBNF
notation and provides a number of practical programming tips and best practices on
program design that enable you to utilize the C# language features effectively.

- Adarsh Khare, Software Design Engineer, Microsoft

C# 2.0: A Practical Guide provides an amazing breadth of information in a compact and
efficient format, with clear and concise writing and useful code examples. It cuts right to the
core of what you need to know, covering every aspect of the C# language, an introduction
to the .NET API, and an overview of pertinent object-oriented concepts. This book tops my
recommendation list for any developer learning C#.

- David Makofske, Principal Consultant/Architect, Akamai Technologies

This book is essential for programmers who are considering system development using G#.
The two authors have masterfully created a programming guide that is current, complete,
and useful immediately. The writing style is crisp, concise, and engaging. This book is a
valuable addition to a C# programmer’s library.

- Edward L. Lamie, PhD, Director of Educational Services, Express Logic, Inc.

At last, a programming language book that provides complete coverage with a top-down
approach and clear, simple examples! Another welcome feature of this book is that it
is concise, in the tradition of classics such as Kernighan and Ritchie. The new book by
De Champlain and Patrick is the best introduction to C# that I've seen so far.

- Peter Grogono, Professor and Associate Chair of Computer Science, Concordia
University

The book covers the basic and the advanced features of a relatively new and well established
programming language, C#. A truly Object Oriented style is used throughout the book in
a consistent manner. C# and Object Oriented concepts are well illustrated through simple
and concise examples to hold the reader’s attention. A very well-written book.

- Ferhat Khendek, PhD, Research Chair in Telecommunications Software Engineering,
Concordia University
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Preface

Writing a short book on a comprehensive programming language was most definitely a
challenge. But such was our mandate and such is C#.

The C# programming language was first released in 2000 and has quickly established
itself as the language de rigueur for application development at Microsoft Corpora-
tion and other software houses. It is a powerful language based on the paradigm of
object-orientation and fully integrated with the Microsoft .NET Framework. Hence, C# is
architecturally neutral and supported by a vast library of reusable software.

To describe all minutiae of the C# language or to indulge in all facets of the .NET
Framework would require a tome or two. Yet the authors realize that experienced soft-
ware programmers are not looking to plough through extraneous detail but are focused
on extracting the essentials of a language, which allow them to commence development
quickly and confidently. That is our primary objective.

To realize this objective, we followed the ABCs of writing: accuracy, brevity, and
completeness. First and foremost, care has been taken to ensure that the terminology and
the discussion on the syntax and semantics of C# are consistent with the latest language
specifications, namely C# 2.0. For easy reference, those features that are new to C# 2.0 are
identified in the margins.

Second, for the sake of brevity, we strike at the heart of most features of C# with
little digression, historical reflection, or comparative analysis. Although the book is not
intended as a tutorial on object-oriented design, a few tips on good programming practice
are scattered throughout the text and identified in the margins as well.

Finally, all principal features of the C# programming language are covered, from basic
classes to attributes. The numerous examples throughout the text, however, focus on the
most natural and most common applications of these features. [t is simply not possible
within the confines of two hundred pages to examine all permutations of C#.

XV
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This practical guide emerged from the experiences of the first author in teaching,
training, and mentoring professional developers in industry and graduate students at
university on the use of the C# language. Its organization is therefore rooted in several
C# jump-start courses and one-day tutorials with an intended audience of experienced
programmers. Although some background in object-oriented technology is ideal, all
object-oriented features are reviewed in the broader context before they are described
with respect to their implementation in C#.

In short, C# 2.0: Practical Guide for Programmers rests its hat on three hooks:

m Provide a concise yet comprehensive explanation of the basic, advanced, and latest
features of the C# language. Each feature is illustrated with short, uncluttered exam-
ples. To ensure that code is error-free, the large majority of examples have been
automatically and directly extracted from source code that has been verified and
successfully compiled.

m Cover the essentials of the .NET Framework. Modern programming languages like
Java and C# are supported by huge application programming interfaces (APIs) or
frameworks in order to tackle the flexibility and complexity of today’s applications.
Although the focus of this book is on the C# language and not on the .NET Framework,
we would be remiss to omit a basic discussion on the core functionalities of the .NET
libraries. Any greater depth, however, would far exceed our mandate.

® Include a refresher on object-oriented concepts. The C# language is fully object-
oriented, replete with a unified type system that encapsulates the full spectrum of
types, from integers to interfaces. In addition to classes, the concepts of inheritance
and polymorphism are given their share of proportional representation as two of the
three tenets of object-oriented technology.

Organization of the Book

The book is organized into ten concise chapters and two appendices. Chapter 1 introduces
the C# programming language and the .NET Framework. It also outlines a small project that
is used as the basis for the exercises at the end of most chapters. This project is designed
to gradually meld the features of the C# language into a comprehensive solution for a
practical problem.

Unlike in books that present a programming language from the bottom up, Chap-
ters 2, 3, and 4 immediately delve into what we consider the most fundamental, though
higher-level, concepts of C#. Chapter 2 begins our discussion with classes and objects,
the first of the three tenets of object-oriented technology. We demonstrate how classes
are defined as an amalgam of behavior and state, how objects are created, and how access
to classes and to class members is controlled. Namespaces are also described as an impor-
tant aspect of “programming in the large” and how they are used to organize classes into
logical groups, to control name contlicts, and to ease the integration and reuse of other
classes within applications.
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A fuller exposé on the basic class members of C# follows in Chapter 3: methods
that define behavior and data members that define state. Constructors, destructors, and
parameter passing by value and by reference are also covered. Chapter 3 concludes with
an important discussion on class reuse and how classes derive, refine, and redefine their
behavior and state via inheritance, the second tenet of object-oriented programming. We
compare inheritance with aggregation (composition) and offer a few guidelines on their
appropriate use.

The unified type system of C# is presented in Chapter 4, showing how value and ref-
erence types are derived from the same root class called Object. All value types, including
nullable types, are fully described, along with a brief introduction to the basic notion of
a reference type. The Object class itself provides an excellent vehicle to introduce poly-
morphism (the third tenet of object-oriented programming), virtual methods, and cloning
using deep and shallow copying. The chapter ends with a presentation of two predefined
but common classes for arrays and strings.

In Chapters 5 and 6, the rudiments of C# expressions and statements are reviewed
with numerous short examples to illustrate their behavior. Expressions are built from arith-
metic, logical, relational, and assignment operators and are largely inspired by the lexicon
of C/C++. Because selection and iterative statements, too, are drawn from C/C++, our pre-
sentation is terse but comprehensive. However, whenever warranted, more time is devoted
to those features, such as exceptions and the exception-handling mechanism of C#, that
bolster its reliability and robustness.

Chapter 7 extends our discussion on the reference types that were first introduced
in Chapter 4. These advanced reference types include delegates, events, abstract classes,
and interfaces. New features such as delegate inferences and anonymous methods are
also covered. In this chapter, we carefully distinguish between the single inheritance of
classes and the multiple implementation of interfaces. Polymorphism, first mentioned with
respect to the Object root class, is illustrated once again with a comprehensive example
based on a hierarchy of counter-classes and interfaces. The two accessors in C#, namely
properties and indexers, are also presented, noting the latest specifications for property
access modifiers.

The last three chapters (8, 9, and 10) shift their focus away from the program-
ming language concepts of C# and examine some of the basic but indispensable fea-
tures of the .NET Framework. Chapter 8 extends the notion of class reuse with a look
at the different types of predefined collections and their constructors and iterators.
Although not associated with the .NET Framework itself, one of the newest features
of C# is generic classes (or templates) and is presented as a natural counterpart to
collections.

Our discussion on resource disposal begun in Chapter 3 is rounded out in
Chapter 9 along with input/output and threads. Input/output is a broad topic and is limited
here to representative 1/0 for binary, bytes, and character streams. Threads, on the other
hand, is a challenging topic, and the synchronization mechanisms required to support con-
current programming are carefully explained with several supporting examples. Finally,
Chapter 10 examines the use and collection of metadata using reflection and attributes,
both pre- and user-defined.
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The first of the two appendices summarizes the grammatical rules of the C# language
using EBNF notation. The second appendix provides an abridged list of the common XML
tags used for the automatic generation of web documentatijon.

Source Code Availability

The code for most examples and all exercises of each chapter is available and maintained
at the website www,DeepObjectKnowledge.com.
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