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FOREWORD

In recent years, the usual optimisation tech-
niques, which have proved so useful in microeconomic
theory, have been extended to incorporate more
powerful topological and differential methods, and
these methods have led to new insights
into the gualitative behaviour of general economic
systems. These developments have necessarily
resulted in an increase in the degree of formalism
in the publications in the academic economic theory
journals; a formalism which can often deter
graduate students. My hope is that the progression
of ideas presented here will familiarise the student
with the geometric concepts underlying these
topological methods, and, as a result, make modern
mathematical economics and general equilibrium
theory more accessible.

The first chapter of the book introduces the
general idea of mathematical structure and
representation, while the second chapter analyses
linear systems and the representation of
transformations of linear systems by matrices. 1In
the third chapter, topological ideas and continuity
are introduced, and made use of in solving convex
optimisation problems. These procedures then lead
naturally to calculus techniques for using a linear
approximation, the differential, of a function to
study its "local" behaviour.

The book is not intended to cover mathematical
economics or general equilibrium theory. However
in the last sections of the third and fourth
chapters I have introduced some of the standard
tools of economic theory, namely the Kuhn Tucker
Theorem, some elements of convex analysis and



procedures usinag the Lanarangian, and provided
examples of consumer and producer optimisation.

The final section of chapter four also discusses in
a fairly heuristic fashion the smooth or critical
Pareto set and the idea of a regular economy. The
fifth and final chapter is somewhat more advanced,
and extends the differential calculus of a real
valued function to the analysis of a smooth
function between "local”" wvector spaces, or
manifolds. Modern singularity theory is the study
and classification of all such smooth functions,
and the purpose of the final chapter has been to
use this perspective to obtain a generic or typical
picture of the Pareto set and the set of Walrasian
eqguilibria of an exchange economy.

Since the underlying mathematics of this final
section are rather difficult, I have not attempted
rigorous proofs, but rather sought to lay out the
natural path of development from elementary
differential calculus to the powerful tools of
singularity theory. 1In the text I have referred
to work of Debreu, Balasko, Smale and others who,
in the last few years, have used the tools of
singularity theory to develop a deeper insight
into the geometric structure of an economy. Review
exercises are provided at the end of the book, for
the use of the reader.

I am indebted to my graduate students for the
pertinent guestions they asked during the course
on mathematical methods in economics, which I gave
at Essex University durinc 1979-1982. It is a
pleasure to thank Mike Martin of Essex University
and Peter Lambert of the University of York for
the helpful suggestions they made, and Pam
Hepworth and Nancy Tobbell for typing the
manuscript.

I am grateful to the Economics Department of
Manchester University for the opportunity provided
by a Hallsworth Fellowship in Political Economy in
1982-83 during which I completed the book.

I hope that this book awakens an interest in
mathematics for the reader, just as mine was by
Terry Wall, Mike Butler, Ian Porteous and
Tom Wilmore at Liverpool University.

Pasadena, California
January 1984
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Chapter 1.

SETS, RELATIONS AND PREFERENCES

In this chapter we introduce the elementary
set theory and notation to be used throughout the
book. We also define the notions of binary
relation, function, as well as the axioms of a
group and field. Finally we discuss the idea of an
individual and social preference relation, and
mention some of the concepts of social choice and

welfare economics.
1.1. ELEMENTS OF SET THEORY

Let U be a collection of objects, which we
shall call the domain of discourse, universal set or
universe. A set B in this universe (or subset of U)
is a subcollection of objects from U. B may be
defined either explicitly by enumerating the objects,
for example by writing

B {Tom, Dick, Harry}

or B = {xl, Xy K3y eeote

Alternatively B may be defined implicitly be
reference to some property P(B), which characterises
the elements of B, thus



B = {x: =x satisfies P(B)}.

For example:

B = {%: =x is an integer satisfying 1 < x < 5}

is a satisfactory definition of the set B, where the
universal set could be the collection of all
integers. If B is a set write x€ B to mean that the
element x is a member of B, Write {x} for the set
which contains only one element, x.

If A, B are two sets write A M B for the set
which contains only those elements which are both in
A and B, and AU B for the set whose elements are
either in A or B. The null set ¢, is that subset of
U which contains no elements in U.

Pinally if A is a subset of U, define the
negation of A, or complement of A in U to be the set

A = {x: x is in U but not in Al}.

1.1.1. A Set Theory

Now let T be a family of subsets of U, where T
includes both U and ¢ i.e.

T= {0, ¢ A, B, ... 1.
If A is a member of T, then write Ae T. Note here
that T is a set of sets.

Suppose that T satisfies the following
properties:

i) for any A e T, Ae T
ii) for any A, B in T, AU B is in T
jii) for any A, B in T, AN B is in T.



In this case we say that T satisfies closure with
respect to (* ,U,N), and call T a set theory.

For example let ZU be the set of all subsets of
U, including both U and ¢. Clearly ZU satisfies
closure with respect to (C ,U,N).

Since a set theory T satisfies the following

axioms we shall call it a Boolean algebra.

Axioms
Sl. Zero element AU ¢ =A, ANd =29
S2. 1Identity element AUU=U,ANU =A
53. Idempotency AUA=A, ANA=A
S4. Negative AUA=U, ANA=2¢
A=A
S5, Commutativity AUB=BUA
ANB=BNA
S6. De Morgan Rule AUB=ANGB
ANB=AUB
S7. Associativity AU(BUC =(AyUB)yc
AN((BNC) = (ANB) NC
S8. Distributivity AU ((BMNC) = (AU B)
N(A U C)
AN (BUC) = (AN B)
ula mcy,

These axioms can be illustrated by Venn
diagrams in the following way.

Let the square on the page represent the
universal set U. A subset B of points within U can
then represent the set B. Given two subsets A, B
the union is the hatched area, while the inter-
section is the double hatched area.
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AUB

ANMB

Fig.l.1.

We shall use C to mean "included in". Thus
A C B means that every element in A is also an
element of B.
Thus:

®

Fig.l.2.



Suppose now that P(A) is the property that
characterises A.

Thus A = {x: x satisfies P(a)} .

We use the symbol = to mean "identical to",

[x € A] = "x satisfies P(a)".

and so

Here "x satisfies P(A)" is a proposition.

Associated to any set theory is a propositional

calculus which satisfies analogous properties,

except that we use A and V instead of the symbols

N and U for "and" and "or".

For example:

AUB

1l

{x: "x satisfies P(A)" V "x satisfies

P(B)"}

AN B

{x: "x satisfies P(A)" A "x satisfies

P(B)"} .

The analogue of "c" is "if ... then" or "implies"

which is written =>.
Thus

A CB = ["x satisfies P(A)" = "x satisfies P(B)"]

The analogue of "=" in set theory is the symbol

"<>" which means "if and only if", generally

written "iff".

For example

'
I
w

[ —)
i

Y
Il
s}
!
"

llx < All <> IIX < BII:I

It

[ACB and B <A]

["x satisfies P(A)" <> "x satisfies P(B)"]



1.1.2. A Propositional Calculus

Let {U,@,Pl,...,Pi,...} be a family of simple
propositions. U is the universal proposition and
always true, whereas ¢ is the null proposition and
always false. Two propositions Pl’PZ can be

combined to give a proposition Pl,ﬂ P2 (i.e. Pl and
Pz) which is true iff both Pl and P2 are true, and
a proposition P, V P, (i.e. P, or P,) which is true
if either Pl or P2 is true. For a proposition P,
the complement P in U is true iff P is false, and
is false iff P is true.

Now extend the family of simple propositions
to a family ? ,by including in P any propositional
sentence S(Pl,...,Pi,...) which is made up of
simple propositions combined under -,V, A. Then P
satisfies closure with respect to (-,V,A) and is

called a propositional calculus.

Let T be the truth function, which assigns to
any simple proposition, Pi, the value O if Pi is
false, and 1 if Pi is true. Then T extends to
sentences in the obvious way, following the rules
of logic, to give a truth function T:P - {0,1}.

If TKSl) = T(SZ) for all truth values of the
constituent simple propositions of the sentences
S, and 8,, then S, = 8, (i.e. §, and s, are
identical propositions).

For example the truth values of the proposition

Pl v P2 and P2 v Pl are given by the table:

!
T(P)) T (P,) T(P) V P,) | T(P, V P,)!
) 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

Since T(Pl v P2) = T(P2 v Pl) for all truth values

it must be the case that P1 v P2 =P, V P,.
8

2 1



