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FOREWORD

Materials processing is the subject of transforming basic materials into useful objects
by forming, joining and modification operations. Most materials processing operations in-
volve transport phenomena: fluid flow, and transfer of heat, mass and momentum. Familiar
examples are the solidification of a metal casting, or the flow of molten polymer into a
mold. Less familiar examples are molecular diffusion and segregation during the solidifica-
tion of multiphase alloys, and the rotary transport of reinforcing fibers during the mold-
ing of composites.

As a subject for research, materials processing is rich in many ways. It provides prob-
lems which are both intellectually challenging and of great practical significance. The
papers in this volume demonstrate the variety of problems and solution techniques in
this area. Also noteworthy is the diversity of background among the authors, who range
from materials scientists to heat transfer and fluid flow specialists. Forums which bring
this type of group together are important to the advancement of materials engineering.

The papers in this volume were presented at the Symposium on Transport Phenomena
in Materials Processing at the 1983 Winter Annual Meeting of the American Society of
Mechanical Engineers. We are grateful to the Heat Transfer Division and the Production
Engineering Division for sponsoring the symposium, and hope that this is the first of
many such gatherings.

Michael M. Chen
Jyoti Mazumder
Charles L. Tucker 111

University of lllinois
Urbana, lllinois
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NUMERICAL SOLUTIONS OF THERMOCAPILLARY FLOWS IN FLOATING ZONES

B-1. Fu and S. Ostrach

Department of Mechanical and Aerospace Engineering
Case Western Reserve University
Cleveland, Ohio

ABSTRACT

A finite difference scheme is used to determine

the axisymmetric flow and temperature fields in a half

floating-zone configuration.

The primary purpose of

this study is to determine the effects of the surface-
tension Reynolds number, Marangoni number, and Prandtl
number on the thermocapillary flow under weightless

conditions.
those for actual growth of silicon crystals.

A strong-

1y coupled nonlinear numerical scheme and variable grid

size are utilized to obtain solutions at the appropriate

large ranges of parameters.

The effects of buoyancy, surface heat loss, and

aspect ratio are also investigated.

The flows are found to form essentially a single-

cell pattern with the core located nearer to the free

surface.

The axial velocity near the free surface is

two to four times Targer than near the axis.

NOMENCLATURE AND GREEK SYMBOLS

A

g
Gr

Ma
Nu

Pr

Aspect ratio (L/R)

Gravity force

Grashof number (ggaelL®/v?)

Heat transfer coefficient from the melt to the air
Thermal conductivity of melt

Floating-zone Tength

Marangoni Number (|dy/36|A6Rg/uv)

Nusselt number (hRO/k)

Prandtl number (v/o)

Radius coordinate

Radius of the floating zone

The range of parameters considered includes

Re

Dimensionless radius coordinate (R/RO)
Surface-tension Reynolds number (Ma/Pr)
Dimensionless temperature (0-90)/Ao
Radial velocity

Dimensionless radial velocity (U/U*)
Reference radial velocity (vReS/L/A)
Axial-velocity

Reference axial velocity (vReS/L)
Dimensionless axial coordinate (Z/L)

Axial coordinate

Greek Symbols

Thermal diffusivity
Thermal expansion coefficient of melt
Surface-tension

Surface-tension coefficient with respect to
temperature

Temperature difference between the top and bottom
rods

Temperature variable
Bottom wall temperature
Surrounding temperature
Dynamic viscosity
Kinematic viscosity

Density of fluid



T Time

T Reference time (Lz/v/Res)

¥ Stream function

¥ Reference stream function (vRéReS/L)
] Dimensionless stream function (¥VW*)
w Vorticity

w Reference vorticity (vRes/L/Ro)

*
Q Dimensionless vorticity (w/w )

INTRODUCTION

The floating-zone method has been widely adopted
as a crystal growth process for high purity single crys-
tals since the early 1950's. The advantage of this non-
crucible process is that container contamination can be
completely eliminated, [1] and [2]. The basic arrange-
ment of floating-zone crystal growth is shown in Fig. 1.
The top rod is a polycrystalline feed material, and the
bottom rod is a pure single crystal. A melting zone is
suspended between the top and bottom rods by surface-
tension. The heat required for melting is supplied by
an induction heating coil. Either the heating coil
moves upward or the rods move downward to keep the single
crystal growing continuously on the Tower rod. Usually
the top or the bottom crystal is rotated at a fixed
speed. According to experience of the crystal growth
industry, the rotation of the crystal can provide a
uniform cylindrical crystal with better quality.

|

INERT GAS OR
VACUUM ENVIRONMENT

FEED ROD

WATER-COOLED HEATING COIL

MOLTEN ZONE

SINGLE CRYSTAL

Figure 1 Floating zone crystal growth

The size of the crystal grown by the floating-zone
method is limited by the gravitational force, which over-
whelms the surface-tension force as the diameter and
zone length become large and causes the breakdown of
the melting zone. The development of the space shuttle
provides a new environment for material processing.

The possibility of growing crystals by the floating-
zone method in space has been explored in recent years.
One of the important topics of the study is the flow
phenomena in the melting zone. The driving forces of
the flow are the surface-tension gradients along the
free surface, the buoyancy force, and the electromag-
netic force from the induction heating coil. The melt
flow has direct effects on the heat and mass transfer
in the crystal growth. It has been reported that
undesirable flows may cause striation and poor quality
in the crystal [3]. In a low-gravity environment, the
natural convection is reduced, but the other driving
forces will still exist. In order to take full advan-
tage of the new environment, the nature of the flows
within the melt has to be well understood.

The primary interest of the present work is to
investigate the flow caused by surface-tension gradi-
ents. Hence, the flow caused by the electromagnetic
field is not studied. Several investigations have been
made to study the surface-tension driven flows in
simulated floating-zone configurations. They were
summarized in [4]. Experimental studies were carried
out under both 1-g and low-gravity conditions,

[5] to [11]. The fluids used in those tests were methyl
alcohol, FC-43, hexadecane, octadecane, silicon oil, and
sodium nitrate. The length, L, and the diameter, D, of
the floating-zones studies were less than 1 cm and the
L to D ratios ranged from 0.5 to 1. Most of the tests
imposed a constant temperature difference between the
top and the bottom rods. This kind of arrangement
approximately simulates half of the floating-zone,

which means the region from the heater to the top or
the bottom rods, Fig. 1. ATl the tests, both under 1-g
and low-g, observed thermocapillary flows in the melt and
transition from steady axisymmetrical vortex flows to
oscillatory flows, as the Marangoni number exceeded

a critical value, which usually is of the order of
magnitude of 10*. Most of the results are qualitative
observations. Very little quantitative results were
obtained for the temperature and flow field distribu-
tions, because it is difficult to measure those
quantities in small floating-zones on earth, let alone
under Tow-gravity conditions in a sounding rocket.
Numerical experiments are one way to obtain more
quantitative information to understand the details

of the surface-tension flows.

The early numerical studies of floating-zones were
done in [12] and [13]. The flows were solved for a full
floating-zone configuration with radiant-ring heating
around the mid-plane of the zone. The range of param-
eters considered in thos papers is many orders of
magnitude Tower than those for actual silicon growth
conditions. Therefore, more numerical work is needed
to determine the details of floating-zone thermo-
capillary flows.

In the present study, a finite difference method
is used to solve the axisymmetric flow and temperature
fields in a half floating-zone configuration. The
main interest of this study is centered on the effects
of Marangoni number, Ma, surface-tension Reynolds
number, Re_, and Prandtl number, Pr, on the surface-
tension driven flow under weightless conditions. Other
effects such as buoyancy, surface heat loss, and aspect
ratio, A, (L/R), are also studied briefly. The range of



the parameters studied are: Ma from 1 to 10°, ReS

from 0.01 to 107, Gr 0, 10%, and 107, Pr from 0.01°to
100, and A 1 and 2. For a silicon floating—zone of 10
cm diameter, the range of Ma from 10 to 10° is equiva-
lent to a surface temperature difference of 5.9 to 107"
to 60°C. In actual silicon floating-zone crystal growth,
the temperature difference along the surface is about 10
to 40°C ([7] and [12]). Thus, the parameter range
studied herein covers the actual silicon crystal growth
situation.

For each case studied, the vorticity, stream
function, velocity, and temperature distributions are
obtained. In order to facilitate the interpretation
of the results, the solutions are displayed graphically
in the form of constant-value contours. In order to
obtain the solutions under the large ranges of Ma and
Re_, a strongly coupled nonlinear numerical scheme and
vakfiable grid size are employed. These schemes are
capable of providing numerically stable solutions for
large Marangoni number and surface-tension Reynolds
number.

MATHEMATICAL FORMULATION

The floating-zone configuration to be studied is
shown in Fig. 2. The flow is assumed to be axisymmetric
and incompressible. The distribution of impurities
and dopants, which usually exist in the melt, will not
be considered herein because the main objective is to
investigate the thermocapillary flow. Thus, the basic
equations are those that express the conservation of
mass, momentum, and energy.

|
|
Z, W
TOP WALL O,+ A0
AMBTENT
TEMPERATURE
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FREE SURFACE 5
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Figure 2 Floating zone coordinates

The boundary conditions are very complicated and

involve the unknown solid-melt interface location, the
temperature distribution in the solid, and the electro-
magnetic flux distribution. Some simplifications are
made to expedite the present work. The boundary con-
ditions employed in the experimental work [5] to [11]
are adopted here. Each of the two rods is maintained
at a constant temperature so that a constant temper-
ature difference is imposed on the 1liquid zone. Since
the upper rod is taken to be hotter than the Tower the
fluid at the free surface will flow from the top to
the bottom. This simulates the flow in the region from
the heating coil to either of the rods and, thus, is
referred to as a half floating-zone. The solid-melt
boundary is assumed to be rigid and flat which is close
to a properly controlled crystal growth situation.
The melt surface is assumed to be cylindrical. This
is justified in [14] for Tow-gravity conditions and
small capillary numbers and verified by the results.
The effect of the zone movement on the flow boundary
conditions is also shown to be negligible in [14].

The dimensionless equations that describe the flows
are:

an  13ran_13ra3n_un
r 3z dr r ar r

t z
1{2 2(1(2 n] a"’n] Gr_ ar y
= AT =I5 raf | + = = D
F!es ar lr Lar a22 Rei r
ar 13y 3T _1 3y ar
at r 8z ar r dr dz
2 2
= L A__a.[ 7 ﬂ] + 87 (2)
Ma r odr ar 822
where the vorticity, @ is
1 32 3 13
n=—42¥-2 [12¥) (3)
A2 2 ar r ar
r a8z

In addition to the boundary conditions stated
above a heat flux balance is specified at the free
surface. In dimensionless variables the boundary

conditions are:

r=o,n=2"'g*“’.r=0arz=o
Azr
at

t=0.n=0.$=0atr=0



The surface-tension Reynolds number indicates the
relative importance of inertia and viscous forces,

the Marangoni number indicates the relative importance
of convection and conduction, and relative importance
of buoyancy to surface-tension gradient force is
indicated by Gr/Resz.

Numerical Scheme

The basic equations (1) to (3) are solved in an
integral form by using an up-wind finite difference
formulation introduced in [15]. The buoyancy term is
included to study the effect of the Grashof number.
After formulation, the non-Tinear finite difference
equations are solved in a strong coupled form by the
Newton-Raphson method. Non-uniform grid sizes are
used to treat the regions where large gradients are
expected. Details are given in Ref. 14.

RESULTS AND DISCUSSION

Most of the cases investigated are for unit
aspect ratio, a constant Nusselt number of 0.3, and
Gr = 0. The value of the Nusselt number will be
justified later. Other cases with different aspect
ratios, Nusselt numbers, and Grashof numbers were
also studied. The parametric ranges covered and
important results are Tisted in Table 1 for all the
cases considered.

Table 1
The Conditions and Results for all Numerical Solutions
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The Effects of Re_, Ma, and Pr

ATT the case3 discussed in this section are with
A =1, Nu = 0.3 and Gr = 0.

rzndt]l number greater than unity

Figures 3 to 7 show the vorticity, isotherms,
streamlines, axial velocity, and radial velocity
cogtours for the flow with Pr = 10, and Ma = 10 to
107, i.e., ReS =1 to 107.

The difference between the minimum and the max-
imum of the numerical solution is divided into a
number of equal-spaced intervals, ten for the temper-
ature and stream function, and twenty for the
vorticity, radial velocity, and axial velocity.
The contours are plotted for every other division,
starting at the lowest interval. The right boundary
of the floating-zone configuration, Fig. 3, is the
free surface, the left is the center line, and the
top and the bottom correspond to the top and the
bottom walls. The vorticity contours have the maximum
positive value at the free surface, and the minimum
negative value at the walls. The radial velocity
contours form two cells due to the different flow
directions. The lower core has the minimum negative
velocity, and the upper core has the maximum positive
velocity. The axial velocity contours have a negative
minimum at the free surface. The axial velocity
becomes positive on the other side of the core, and
reaches a positive maximum near the middle of the
floating-zone. Table 1 gives the minimum and maximum
values for all the cases studied.

In general, the flow pattern is a clockwise,
single-cell flow. The fluid moves from the top to
the bottom along the free surface because the surface-
tension decreases as temperature increases. From the
energy equation, Eq. (2), it can be seen that the
larger the Ma, the stronger is the convection. In
Fig. 3, for Ma = 10, the isotherm pattern is a
stratified conduction-type. No thermal convection
effects can be observed. The Tinear temperature
distribution along the free surface, Figs. 3 and 8,
generates a uniform surface-tension gradient, which
drives the fluid adjacent to the free surface. In
terms of vorticity, the uniform surface-tension
gradient creates an almost constant vorticity source
along the free surface.

Because Re_ is small, the vorticity distribution
is governed by diffusion. Without convection the
vorticity contours are symmetrical with respect to
the middle plane, z = 0.5, Fig. 3. Hence, the core
of the flow cell is located at the middle plane,

z = 0.5, and r = 0.83, Fig. 3. The radial velocity
contours, Fig. 3, show a top to bottom symmetrical
distribution. The axial velocity contours show a
downward flow near the free surface that occupies a
narrow region near the free surface, about one-fifth
of the radius, and the upward flow occupies the rest
of the region. The maximum downward velocity is

2.85 times higher than that of the upward flow, Table 1.
When Ma increases to 100, Fig. 4, the stratified
isotherms are displaced in the flow direction due to
thermal convection. The free surface temperature
becomes less linear, Fig. 8. The vorticity contours
still show a diffusion dominant pattern, Fig. 4.
because Re_ is small, 10. The flow field and the
free-surfacd velocity distribution, Figs. 4 and 9, show
1ittle change from that of Ma = 10.
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Figure 6 Flow field contour
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Figure 7 Flow field contour

For Ma > 103, Figs. 5 to 7, the thermal convection
becomes dominant over most of the floating-zone. The
flow brings colder fluid toward the upper corner and
displaces hot fluid towards the Tower corner. The4
free-sgrface temperature distributions for Ma = 10
and 10°, Fig. 8, indicate thermal boundary layers near
the two rigid surfaces joined by an essentially uni-
form temperature region. In Fig. 6, Re_ = 107, the
Re_, or the vorticity convection, is not sufficiently
1a§ge to influence the vorticity diffusion. Hence,
the large vorticity sources created by the top and
the bottom thermal boundary layers diffuse into the
field, and accelerate the fluid locally. There is no
significant driving force in the flat temperature zone
so that velocity peaks occur near the two ends of the
zone along the free surface, Fig. 9. The flow-cell
core, Fig. 6, is located above the mid-plane of the
floating-zone. This is because the thermal boundary
layer is thicker at the upper corner. The flow
phenomena in Fig. 6 have been seen in movies made by
Chun and Schwabe.



In Fig. 7, because of the high Re_, 104, the
convection of vorticity becomes importént and, as a
result, the vorticity at the upper corner is moved
downward by the flow and it does not diffuse into the
interior as far as it does for smaller Re_. The core
of the flow cell is thus displaced downwa?d. Fig. 10
shows the vorticity distribution across the line z =
0.54. For low Re_, the distributions of the vorticity
have a diffusion Brofile—high values occur at the
free surface. As Re_ increases to 100, the convective
effect starts to smodth out the orticity gradient
near the surface. When Re_ = 107, the vorticity at
the free surface is much 13wer than at the adjacent
interior. This high internal vorticity comes from
upstream. The vorticity created by the surface-
temperature gradient at the Tower corner is confined
to a small region by the flow. Hence, no Tocal
maximum of the surface velocity is observed, Fig. 9.

A1l the descriptions made above for Pr5= 10 apply
for gr = 100 except for the case of Ma = 10~ and ReS
= 107, Fig. 11. Because the Re_ is not sufficiently
large to make the vorticity conVection dominant,
there are still two velocity peaks and the core of
the flow cell is near the upper corner.
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Figure 9 Free surface velocity profiles

From the calculations for Pr > 1, it appears that
the flow pattegn changﬁs qualitatively at a value of
Re_ between 10” and 10°. The major change in the 3
th&rmal field occurs at a Ma somewhat larger than 10°.

Prandtl number smaller than unity

Figs. 12.to 16 show the3f1ow f;e]ds for Pr = 0.01,
Ma = 10 to 10°, and Re_ = 10 to 10°. The Ma has a
similar effect on the fsotherms as in the previous

Pr > 1 cases. For Pr <1, Re_ is always larger than
Ma, that is, the vorticity coﬁvection occurs before
the §herma1 convection. In Fig. 12, Ma = 10 and Re

= 107, the vorticity contours indicate the convectidn
effect, whereas the isotherms do not. In Fig. 12 and
13, the convection of vorticity causes a higher
vorticity region near the lTower corner. As a result,
the cores of the flow cells are located in the Tower
half of the field, agd the radial velocity is higher
there. For ReS > 107, Fig. 14 to 16, the strong
convection of Vorticity tends to homogenize the
vorticity in the floating-zone. Therefore, the cores
of the flow cells move back to the center of the field.
Because of the vorticity convection effect, there are
no peaks in free surface velocity.
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Figure 11 Flow field contours



Effects of Nusselt number

The heat Toss at the free surface increases with
the Nusselt number. A1l cases to this point were
computed for Nu = 0.3. In order to study the effect
of surface heat loss, calculations were made for Ma
=107, Pr = 10 and 0.01, and Nu = 3 and 0.03. AIll
aspects for Nu = 0.03 are found to be similar to those
for Nu = 0.3. However, there are significant changes
when Nu = 3. The surface temperature is much lower
for Nu = 3. The temperature gradients at the top and
in the middle of the free surface increase whereas it
decreases at the bottom due to the higher heat loss.
As a result the core of the flow is lTower and the two
velocity peaks are reduced.

Thus, it is seen that increasing the free-surface
heat loss influences the flow much more than decreasing
it. This is because the thermal convection in the
zone overwhelms the heat Toss when Nu < 0.3. However,
when Nu = 3 the heat Toss is sufficiently strong to
alter the temperature distribution established by
thermal convection. This indicates that the surface
heat 1oss will have larger effects on Tow Ma flows, in
which thermal convection is relatively smaller.
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From the movies of Chun and4Schwabe two velocities
can be observed at about Ma = 10°. This seems to imply
that the actual Nusselt number is around 0.3 or Tless.
In order to obtain more detailed information on Nu a
solution is obtained for the interaction between
the melt and its surroundings (air). The streamlines
and isotherms are shown in Fig. 17. The thermal
boundary condition imposed on the free surface is the
continuity of temperature in the melt and in the air.
Thus, the heat transfer from the melt to the air is
determined from the solution. The conditions for
the melt are taken to be the experimental conditions
in (9). The width of the air annulus is the same as
the melt radius and its height is twice that of the
melt. The surface temperature of the air annulus is
taken to be that of the lTower zone surface temperature.
The patterns are similar to those previously computed
and the average Nusselt number is found to be 0.184.
Thus, the value used in the parametric studies seems
appropriate.

For Pr < 1, such as in silicon growth, the heat
transfer will be higher than in the low-temperature
experiments because of radiation losses. Nu = 0.3
is quiva]snt to a heat transfer coefficient of 0.019
watt/"C/cm®, which is in the neighborhood of the actual
value for a silicon rod with a 10 cm diameter.
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Figure 17 1lsotherms and streamlines for air-melt
configuration with zero air surface
temperature

SUMMARY

A11 the solutions show a single-cell streamline
pattern with the core located at about three-quarters
of the radius away from the axis. The downward axial
velocity near the free surface is about two to four
times higher than the upward axial velocity near the
axis.

The Marangoni number determines the relative
importance of thermal convection to thermal diffusion.
For Ma < 10, the iaotherms from a conduction pattern.
When Ma reaches 107, thermal boundary layers are formed
along the top wall and along the top and bottom of the
free surface convection. A near zero temperature
gradient region falls in between the two thermal
boundary layers along the free surface.

The surface-tension Reynolds number determines
the relative importance of the vorticity convection to
the vorticity diffusion. When Re_ < 10, the vortlcity
is distributed by diffusion. When Re_ reaches 107,
convection confines the vorticity diffusion to the
region close to its source.

The combined effects of vorticity and thermal
convection cause a shift of the Tocation of the core
of the flow cell and the shape change in the stream-
Tines.

There are significant differences between the
flow with Pr > 1 and Pr < 1, such as the streamline
patterns, and two peak surface velocities appear in
the flow with Pr > 1 and do not in the flow with Pr
£ L.

The flow patterns for aspect ratios of one and
two are similar. No multiple cells were found.

The effect of heat Toss on the flow is smal] when
the Nusselt number is less than 0.3 and Ma = 107,
because the thermal convection in the fluid is much
stronger than the heat loss. The Nusselt number will
have greater effects on low Marangoni number flows.

The buoyancy force generates negative vorticity
in most of the flow field. The negative vorticity
weakens the positive vorticity generated from the
surface, hence, reduces the flow.

Space limitations prelude detailed discussions of
the effects of the aspect ratio, the Grashof number,
and other factor, but these are presented in detail
in (14).
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ABSTRACT

The stability of the crystal-melt interface
surrounding a vertical, coaxial melt annulus undergoing
stable convection flow was investigated. A novel in-
stability, designated as '"coupled mode", was found due
to the effect of convection on the deformable crystal-
melt interface. This instability occurs above a
cricital Grashof number of circa 160, which is an order
of magnitude smaller than that corresponding to a rigid-
wall interface. At instability, the crystal-melt inter-
face was found to rotate with a period ranging from a
few minutes to more than ten hours depending on the
melt radial gap. The scalings were fully characterized
both in a linear stability analysis and in an experi-
ment with a general agreement between them.

BACKGROUND

Previous experiments conducted by Mickalonis and
Glicksman [1,2] disclosed a novel interface instability
under thermal conditions for which the crystal-melt
interface is supposed to be morphologically stable in
the absence of flow. The present study [3] was
carried out to characterize this instability in detail,
both experimentally and theoretically.

Our primary interest evolves on the fact that such
convective instabilities depend directly on the gravi-
tational acceleration, g, through the Grashof number
Gr = gBATL3/v2, where B is the volumetric expansion
coefficient of the melt, AT is the temperature drop
across the melt gap, L, and v is the kinematic viscos-
ity. Thus, gravity has a direct influence on the
occurrence of such instabilities, and may be used to
modify their appearance through the scaling laws
implicit in the Grashof numbers. A large reduction in
the value of g, for example, in a low earth orbit
g = 10~%ge, where go. = 980 cm/sec?, would permit a
modest increase in the length scale L, by more than an
order of magnitude.

The control of fluid motions and their influence on
the crystal morphology is a central theme of materials
processing in space. By investigating flow interaction
with solid-liquid interfaces one can establish the
sensitivity of the crystallization process and its

1

ultimate outcome to the gravitational conditions pre-
vailing during processing. It was for this purpose that
the experimental and theoretical studies outlined in this
paper were carried out.

EXPERIMENTAL

In this experiment, a long cylindrical sample of
pure succinonitrile (Prandtl number of melt = 22.8) was
heated by an electrical current passed through a fine,
coaxial, vertical wire, and the outer radius of the
crystal was maintained at a constant temperature below
the melting point, so that a vertical melt annulus
formed between the coaxial heating wire and the
surrounding crystal-melt interface. With this arrange-
ment the temperature decreases monotonically from the
liquid toward the solid across the solid-liquid inter-
face, and consequently the interface would be morpholog-
ically stable in the absence of fluid flow. However,
the presence of convection flow in this experiment in-
duces a novel interface instability under certain
critical conditions. The critical condition for the
occurrence of this interface instability is governed by
the Grashof number (ratio of buoyance to viscous forces).
The state associated with the formation of the unstable
interface is designated as the "helical mode". The
presence of this mode occurs only when the Grashof
number is larger than a certain critical value. Since
this mode would not occur in the absence of either
fluid flow or the crystal-melt interface, it is thus
also denoted as the "coupled mode". At smaller Grashof
numbers, the interface is configured as a straight,
stationary cylindrical shape. This state is referred to
as the "cylindrical mode". The morphology of these two
states is shown in Figure la and 1b.

STATUS OF THEORY

These experimental discoveries motivated a com-
panion theoretical investigation by S.R. Coriell, et
al., [4] at the National Bureau of Standards. They used
linear perturbation analysis of the Navier-Stokes
equation for small Reynolds number in the Boussinesq
approximation but included boundary conditions pertinent
to the crystal-melt interface, which are different from
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Figure 1. A long cylindrical sample of succinonitrile is heated by an electrical current
through a coaxial vertical wire so that a vertical melt annulus forms between
the wire and the surrounding crystal-melt interface. a) below a critical Grashof
number of circa 160, the crystal-melt interface is cylindrical; b) above the
critical Grashof number, a helical crystal-melt interface forms; c) multiple
exposures show motion of the helical interface; and d) a dendritic "belt'" formed
by abrupt undercooling indicates the helicity of the interface.

those associated with a rigid wall. The Grashof numbers by an asymmetric mode at a Grashof number of 176, which
calculated for neutral stability from this theory as a is in good agreement with our experiments.

function of the spatial frequency of the perturbation is

shown in Figure 2. The higher axisymmetric mode (n=0) SUMMARY OF RESULTS

in the figure is essentially identical to that obtained

previously by Choi and Korpela [5] for rigid iso- The results from these experiments and a general
thermal boundaries. In contrast, the lower axi- comparison with the theoretical calculations is
symmetric mode and the asymmetric mode (n=1) only occur summarized in the following:

when a crystal-melt interface is present (see Fig. 2).

This theory has predicted that the onset of instability 1) A non-axisymmetric mode, designated earlier as
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