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EDITOR’S PREFACE

The Seventh Symposium in Applied Mathematics, sponsored by the Ameri-
can Mathematical Society and the Office of Ordnance Research, and devoted
to Mathematical Probability and Its Applications, was held at the Polytechnic
Institute of Brooklyn on April 14 and 15, 1955. This volume contains the
papers (one in abstract form) which were presented at the Symposium.

Prolonged consideration by the members of the Program Committee, under
the chairmanship of Dr. H. W. Bode, resulted in the decision that the Sym-
posium should be concerned with three principal themes, viz., The Theory of
Diffusion, The Theory of Turbulence, and Probabtlity in Classical and Modern
- Physics. However, it was the intention of the Committee that these terms
should be interpreted broadly and that the speakers should avail themselves of
considerable freedom in determining the actual contents of their papers. In
particular, it was understood that the term ‘““theory of diffusion” was to be
interpreted so as to cover a wide variety of relations between probability and
differential equations.

The three themes were dealt with in the order in which they have been men-
tioned, and the papers appear here in the order in which they were given.

Many individuals bave participated, directly and indirectly, in the work of
preparing this volume. The editor wishes to express here his sincere thanks
to all of these collaborators. The advice and encouragement given by Profes-
sor R. V. Churchill, Chairman of the Editorial Committee for the Proceedings
of Symposia in Applied Mathematics, has been particularly helpful. All who
participated in the Symposium are indebted to the McGraw-Hill Book Com-~
pany, Inc., which, beginning with the Proceedings of the Symposium on Elas-
ticity, has undertaken the task of bringing the Proceedings of these Symposia
on Applied Mathematics to the scientific public iz book form.

L. A. MacCoLL
Editor
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BROWNIAN MOTION DEPENDING ON n PARAMETERS:
THE PARTICULAR CASE n =5

BY
PAUL LEVY

INTRODUCTION

Let E,. be the Euclidean n-dimensional space, A and B points of E,, and |
X(A) the Brownian function, ¢.c., the Gaussian random function (r.f.) defined
up to an additive constant by the formula

m - X(B) — X(4) = Hr(4,B)},

in which r(4,B) is the distance between A and B, and £ is a reduced Gaussian
variable.

Let us now suppose that a set § C E, is given and that the values of X(4) are
known at every A € §. At the other points X(A4) has a conditional distribu-
tion, which we shall write in the canonical form m + o, wherem = E{X(4)|8}
and ¢ = o{X(A)|6} are the conditional expectation and the conditional
standard deviation. If we obtain new information, i.e., if & increases, ¢ is
nondecreasing.

Now let © be the surface of a sphere with center O and radius #, and let
M (#) be the mean value of X(4) on Q. Although M(f) is not a well—deﬁned
rf., M(t) = M(t) — X(O) is a well-defined Gaussian r.f. Thus, to redefine
M(¢), it is sufficient to know its covariance I'a(¢1,t2).

Let & denote the entire region outside of Q, that is, r(0,4) = ¢, and let

(2) c{X(0)|&:} = cath, o{X(0)|Q} = citt.

Since o is a nonincreasing function of &, c.t? is the minimum of ¢{X(0)|8} if
& C Q. Since E, is a section of E,,;, one obviously has

’ ’ ’
3) Cn = Cpy Ca = Caty, Cn = Cpyye

Then, in the limiting case n = « (Hilbert space), ¢, and ¢, have limits ¢, a.nd .

’

el. These limits are
(4) cw = 0, c2=1—21%,

It is easy to find the value of ¢/ but not easy to obtain the values of ¢, and
to prove that lim ¢, = 0. Since m{X(0)|&]} is obviously a linear function of
the values of M (u) in (0,t), we were led to consider the continuation to the left
of M(u). Thus the first problem is to define the covariance I'a(t1,t2).

If » is even, the covariance is an elliptic integral, and the study of M (¢)
appears to be very difficult. If n is odd (»n = 2p + 1), then I', is a rational
function of ¢ = min (¢),t2) and ¢ = max ({;,¢2). Thus one can obtain an

‘ ‘ 1



2 ' PAUL LEVY

explicit expression for M (f) and solve all problems concerning the continuation
of M(#) to the left and to the right.

But the subject is wide, and this is only the first of several papers.t The
second will be presented at the next Berkeley Symposium. In this first paper,”
the particular case n = 5 will be completely described. The case n = 3 is too
simple to give satisfactory insight into the general theory. The valuen =5
presents for the first time a very curious circumstance: M (¢) satisfies two differ-
ent stochastic differential equations; the first determines the continuation to
the right, and the second the continuation to the left. These two equations
are related to two analytic éxpressions for M (f).

The author was very surprised to notice these facts, and thinks it worth-
while to-begin with a preliminary chapter in which a quite analogous circum-
stance appears in a very simple case. After this chapter, it will be easier to
follow the solution of our problem in the case n = 5. Brief indications on the
general case n = 2p + 1 will be given in Sec. 2.3 and in the footnotes.

1. A SiMPLE CLAss oF GAUSSIAN RANDOM Funcrions

1.1. The Greek letters ¢ and #, with or without subscripts, will always
denote reduced Gaussian variables. The well-known Brownian (or Bachelier-
Wiener) function will be denoted by

® X@) = [} utdup, > 0).
This formula has the same meaning as
(6) 8X (1) = &(dr),

where £, depends on ¢ and d¢ and the Cauchy condition X(0) = 0. Then, if
X. = M., with A a constant, we may write

ﬁ) ‘Fu) X u(du)t = ) L ‘fu) dX(w) = M@OX () — A L " X (u) df(u).

Now let
) L) = [ OXu + uY)@dw), > 0),
where X, and Y, are joint Gaussian variables, with E(X,) = E(Y.) = 0, and
(8) E(X2) = a, E(X.Y.) =b, E(Y2) =c,
where q, b, ¢ are indep;endent of %, and necessarily
9 az0, c=0, b = ac;
moreover, unless ¥(¢) is identically zero,
(9a) a+c>0.

t The most important results, without proofs, have already been given in C. R. Acad.
Sci. Paris vol. 239 (1954) pp. 1181, 1584; vol. 240 (1955) pp. 1043, 1308. This is the first -
part of the detailed statement.
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~ If b* = ac, we may write ¥(¢) in the simpler form

(10) ¥(O) = [ O+ pwE(du),  \'=a,Mm=but=0)

Obviously, if either £, is replaced by — £, or A and x are replaced by —\ and
—u, then we have the same random function.t Then we shall assume

(11) s=A+p20,

without loss of generality. In the case (10) we have

() = Nt [ u(du) + stt(d, (de > 0),

and, if we use (5), then
(12) W (t) = A\X () dt + st 6X(¢)
even with df < 0. This formula and the Cauchy condition ¥(0) = 0 are
equivalent to (10). o

If s = 0, then ¥(¢) is differentiable, with derivative AX (). In this case,
¥(¢), is a Markovian function of order 2, i.e., the two joint functions ¥(f) and
¥'(t) form a Markovian system. In the general case, ¥(f) and X (¢) form a
Markovian function. Also ¥(f) is a Markovian function in the trivial cases

A=0and p =0and also if k = A\/(A + ) = —1 or —2. [This will result
from formula (28).]

1.2. A Gaussian function is defined if its covariance is known. If
{ = min (tl,h), ¢ = max (tl,tz),
then the covariance of ¥(¢) can be written
vt = [ BEX. + 0V )X, + u¥.)] du

=t'/:(at+bu)du+[;(btu+cu’)du.
Finally, setting

. b b, ¢
(13) a—a+§: B--2'+§1
we obtain
(14) v(tts) = ot + B3, [t = min (¢4;a), ¢ = max (t1,82)].
In.the case (10), the values of « and B are
=2t M =M e
(15) a=N+5 =3 +5

t We consider a random function (r.f.) as well defined if we know the set of all possible
functions and the probability distribution in that set. If one of these functions is considered
apart from the others, we shall say “an individual function is known (or given).” Thus, if
£ is replaced by —£., we clmnge the individual function but the r.f. is the same.
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4 PAUL LEVY

One might have thought the ¥(f) form a family of r.f. depending on three
parameters, a, b, c. 'We now see that we have only two parameters, « and g.

1.3. TrEoREM 1. 1° The function v(t1,ts) in (14) is a covariance if, and
only if,

(16) 3a+820, 3+az0.

2°.° In this case 7(t1,tQ) 18 the covariance of a function ¥ (), which can, in
general, be represented in the form (7) depending on one parameter and also
represented tn two distinct ways in the form (10). The only exception is the case

(17) (Ba +8)(38 + a) = 0,
where ¥ (¢) has only one representation, which may be written in the form (10).
Now, to exclude the case ¥(t) = 0, we may add the condition
W2(¢
w0, o
Then at least one of the numbers 3« + 8 and 38 + « [the sum of which is
4(a + B)] is positive.
Proof. 1°. If y(i1,t2) is the covariance of a r.f. &(f), e*®(e?) has the
covariance

(19) ae~!vl 4 Be-dlul (u = ur — us);

and, conversely, if this function is a covariance, v(f,,t2) is a covariance. Now,
by a theorem of A. Khintchine, an even function of 4; — us that has a con-
tinuous Fourier transform is a covariance (in fact a stationary covariance) if,
and only if, the Fourier transform

(t)
(18) atp =280 _ E’[

3

(20) a4 38 _ 3Ba+8) + (a + 38)u?

14w " 94 u? 14+ 4?9 + u?)
is never negative. Thus the conditions (16) are necessary and sufficient.
Q.E.D.

2°.  We have to compute a, b, ¢ from (9) and (13). Using (13) to eliminate
b and ¢, the last equation (9) is

(21) b* —ac = a® — (5a + 3B8)a + 4a2 £ 0.

We deduce from (16) that

(22) D = (5a + 38)* — 16a? = 3(3a + B)(a + 38) = 0.
Therefore, the equation

(23) 2 — (ba + 3B)x + 422 =0

has real roots, a; and a: 2 a;, with b? £ ac if, and only if, a ¢ [a;,a;). From

(24) ag: =420, art+ar=32c+38)+3iBa+8) =0



FIVE-PARAMETER BROWNIAN MOTION 5

it follows that as = a; = 0. If a is chosen in [a,,a], and if b and ¢ are com-
puted from (13), two possibilities arise: either a = a; = 0, and then « = 0 and

¢ =382 0,orelse a > 0, and then ¢ = 0 is deduced from ac = b%. In both

cases, the conditions (9) and (16) are fulfilled.

It is obvious that we get the form (10) if, and only if, b* = ac, thatis,a = a;
or a;. We have one solution if D = 0 and two if D > 0. Q.E.D.

1.4. We shall now consider only the form (10) of ¥(). We shall write the
letters A, p, ¥, or X with the subscript ¢ (i = 1 or 2) if we wish to specify that
a = A? has the value a;. From ;

(25) 8=+ pu?=a+ 36

and from (11), we deduce that s has only one value (in the general case, we
havea + 2b + ¢ = a + 38). We introduce k, K, and s by

(26) A = ks, u=(1—k)s, B = Ka.
We find from (15) [Ty Sk
Koo et 2 _ 3k — k) +2(1— k) _ 2 — kg io o ge
6A' + 3w 6K+ 3k(1 — k) 3(k #/FD 2
that is, | =i Tl %
-2 (== = s
@n it v Cx ——F[=15 75
: =F[CIa| |
We have real values k; and ks of k if ~=LUICIPT |
¥ _3K+3)

3K+1 3K +1 —

This condition is another form of (22), and k, and k; are linked by the involutive
relation

(28) ki + ks = —1.

The double points —7 and « of this involution correspond réspectively to the
values —3and —§ of K (if k = 0, s =A+u=0;if k = —5, 3\ +u =0).
Since @ = A\? = k?s? and a2 = a,, and taking into account (28), we have

k%—kf=k1—kzgo,
and

(29) ki2 —3 2 ks
1.6. Consider now the equation (12). We deduce
(30) E{[s% ()]} = s*|dd] + o(db), (dt— 0)

and have a new proof of the following fact: if the r.f. ¥(¢) is defined, s* has only
one possible value. The same conclusion holds if an individual ¥(f) is given

" in a small interval (f;,{2)." This can be deduced easily from well-known almost
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sure (a.8.) properties of X (¢).t Since A has two possible values (unless K = —3

or —3), there is no hope of deducing this parameter from an individual ¥(t).
Formula (12) leads us to-another important conclusion when we write it

successively with the subscripts 1 and 2 and suppose ¥;(f) = ¥(¢). Then

(31) st 3[Xa(t) — Xa(0)] = MXa()) — MaXa()] dt + o(de).
Thus the difference X.(t) — X,(¢) is differentiable (even if s = 0; in this case
it is zero).

-1.6. If an individual X () is given in (0,T), all the £, are known in (0,T), :
and the corresponding ¥(¢) is given by (10) or (12). The converse problem is
very important. The solution is given by the following theorem.

THEOREM 2. Suppose an individual ¥(t) s given in [0,T). 1°. If ;

¢
k=kl>k3,

. and te (0,T), then only one X (t) corresponds to the given ¥(t). 2°. The same

. conclusion holds if ky = ks. 3°. Ifk = ks < k1, X(¢) s not known but depends

on*a Gaussian variable c, with positive standard deviation o(c). )
Proof. In all three cases, (12) may be written in the form

- (32) 8 B[t X (£)] = t+1 6w (2).
Thus, if 8 > 0, and if X*(¢) is a particular solution of this equation, the general
solution is
(33) X(@) = X*(¢) + ™,

and ¢ is obviously either a known number or a Gaussian random variable with
positive standard deviation ¢(c). As the given values of ¥(¢) and the unknown
values of X (f) are joint Gaussian variables, there exists no other possibility.

1°. If k = ki > ks, then k > —3, and /
(34) CBX@) S0, @ > 0).

This is a Cauchy condition, from which we deduce
(35) X)) = [[urav) = @) - (k- 1) f W) du.

Since here s > 0, the first statement is proved.

2°. ki = kyimplies s = Qork = —3. If 8 = 0, we have already deduced
from (12) that AX (¢) is the derivative of ¥(¢{). If k¥ = —3, the above Cauchy
condition holds in a generalized sense. One has '

(36) - [, UesX () du— 0, (U — +).
This condition yields e.
t For instance, if n— o, 2°[X(t 4+ 2™) — X(t)]’ tendn a.8. to 1 in the Cesaro sense.

Tf%%‘%f?%)ﬁ* ‘)%ﬁmﬂ%ﬁﬁf WWW ortongbook com
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3°. The value of o(c) will be found in Sec. 1.7 [see formula (44)]. It is
positive, and this will complete the proof of the present theorem.

Another proof may be deduced from a theorem which may be briefly stated
as follows. If a funciion f(t), given in (0,T), is a possible function X (t), then
F(@) + ct= (¢ = 0) s also a possible function X (f) if and only if « > 3. Thus,
if £ < —3, thatis, k = k2 < ki, we have no way to choose one of the functions
X (¢) in (33) and say that it is the correct one.

CoroLrarY 1. 1° If k = k; (even if k; = ki), we have exactly the same

-information, whether an individual ¥(¢) is given in [0,T'] or the corresponding
X (t) is given in this interval.

2°. If k = ks < k;, we have more information when X (¢) is given in [0,7]
than when ¥ (¢) is given in this interval.

' 1.7. The continuation of ¥(¢) to the right. 1°. As a preliminary problem,
suppose an individual X(u) given in (0,f). The problem is to write ¥(¢'),
(¢ > t),in the canonical form m + ¢, m béing the conditional expectation and

.o the standard deviation. Since in

) = [ OF + i@t + [ O + w)tu(du

the £, in the first integral are known [£.(du)? = 8X(u)] and in the second inte-
gral they are independent of the given individual X (u), we have :

(37) Ao g L ‘O + pu) dX (),

(38) - ot = [ O + pw)tu(du).
It follows from (38) that

(4 .
(39) o= f O + pu)tdu = (¢ — 1) [w' + Mt/ + 8)
t
. ekt
+ % "+t + t’)].

As expected, if ¢’ — ¢ = df, then m — ¥(¢) + o¢ has the form (12).

2°. Suppose now an individual ¥(u) given in (0,f). If ¥(u) is given in the
form ¥,(u), we have exactly the same information as if X,(u) were given, and
the preceding conclusion holds: m + ¢¢ is again the canonical form of ¥(#’),
# > t), and m may be written

(40) m = V() + Nt — )X (@).
Then, taking into account (35), we have

. ' ¢ k-1
(41) w() —¥(@) = k‘-—t_—‘- L (1;) d¥(u) + o,

where ¢ is given by (39).
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3°. If now ki > ks and we use the form Wi(f) of ¥(f), then X (¢) = Xs(f).
Since this function is not known, the number m defined by (37) is not the con~

ditional expectation of ¥(t’). However, m and o¢ are still independent, (40)
holds, and we may suppose T = ¢ in (33). Thus we have

(42) o® = Ap*(O) (' — O)* + o},

where ¢ = o} and o} are computed from (39), written with the subscripts 1
and 2. From A = ks and u = (1 — k)s, we deduce

3
Also, from ky + ks = —1, k} — k} = — (ky — ks), we deduce
of — o} = (k1 — ke)8%(¢' — ).
Using (42), we have finally

(44) v’(c) = (k1 — ka)kz* > 0,
(ks — k1 = 1 + 2ks < 0).

(43) o? = (t’ _t)8,[1 +k3+ k’t”+ 1 +k —Zk’tt"" (1 — 2k+k’)t’].

Thus the last statement of Theorem 2 is proved. Moreover, if u <t

then the unknown part of Xs(u) is o(c)éw*, and its standard deviation,
o(c)u*, is a decreasing function of t, as foreseen, since, as ¢ increases, we have
more information.

1.8. The continuation of ¥(¢) to the left. 1°. The formulas (32) and (33)
hold if an individual ¥(f) is given in (7,«). But here, as {— «, then
#X(t) 25 0 if, and only if, k = ks < —§ (instead of k = ky > —3). Thus
we have a theorem which is quite like Theorem 2, but the subscripts 1 and 2

are interchanged. If k = k. (even in the limiting cases k = —% or ),
X() = X:(t) is known in (T, =), and if k¥ < —3%, it is given by
(45) sXa(t) = [ wr deu).

On the contrary, if k = ky > —3%, X(¢) = X,(t) is a r.f., and may be wntten
in the form (33), with ¢ again a Gaussian variable.

2°. Since X(f) depends only on d¥(u), the preceding results hold 1f the
difference ¥(¢) — ¥(T), instead of ¥(t), is known in (T,®). Then X,(¢) is
known in (7', «), and not only are the £, with subscripts « > T known in X,(f),
but also the others are linked by

Jo= [ tu(dw)t = Xx(T).

The continuation problem is not so simple as in Sec. 1.7. We have to write
¥(t), (¢ = T) in the canonical form m + ¢¢. From the general theory of
joint Gaussian variables, we know that m = ctJ, and that ¢ is given by the
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condition that ¢ shouid be minimum. One has )
= B0 o) = [0 - et il o [
= O =%+ -t + £ o 4 (T —)
= 07 — @+ e + (3 + +8)e.

Thus the minimum is obtained with

(46) c ’,(" + g)-;—.: m = (A + .;.).f;,x,(r),
and its value is .
(47) 0’=(>\’+7\n+%:)t'—()\+§)’%

=.L‘:gt+ X+£)’t‘(1-i .
12 2 ¥

Ift =0,thenm = o = 0. If¢ = T, then the canonical form for ¥(T) is

(48) ¥(T) = (x + g) TXA(T) + o, (u" -£ T-),
and, if A =0, p = 1, .

T t
@9 7= [T ueaon = 2 + 2(2),

from which one easily returns to (48).

All these formulas hold, if X(T') is known, for \;, u;, X, either with ¢ = 1 or
with ¢ = 2. However, we have supposed only that an individual ¥(f) — ¥(T"
is given in (T, ) and that X,(f) is given by (45) but not X(¢) unless A; = As.
Thus these formulas give the canonical forms of ¥(f) and ¥(T) if ¢ = 2 but
not if ¢ = 1, unless k; = k. :

8°. Ifk = ki > —%, we deduce from (33) and (48)

‘I’(T) = ‘klzﬁ GTX*(T') + -kl—;-—l csTik + cle,
and, since we have necessarily the same o = oy as in (47), thus

2
(ks + 1)=§a'(c) = o} = op =g o) 541’,

and finally '
<5°> 0= EEHT - Rt
(51) X = 2 e, €z ).

As foreseen, this value increases ﬁm T.
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4°. The same method may be used for other problems. If, for instance,
only X(¢) — X(T) is given in (T, =), we have no information on the £, with
subscripts u < ¢, and the problem becomes quite trivial. On the contrary,
if p 0, and if ¥(?) is given in (7', ), then Xa(t), ¢ = T),Joand J, are known,
and the conditional expectation of ¥ (), (¢ < T) has the form coJo + ¢1/3.
The calculation is more complicated than in 2° but not difficult. If g = 0.
then ¥({t) = MX(¢), and this problem is trivial.

1.9. Application of the Fourier-Wiener series. It is known that the com-
plex Brownian function '

20 = XOLIO _ [y

may be defined in (0,2x) by-the Paley-Wiener formula
(52) 20 = @7 [1t+ ) (e — 1)),

n 0
where ¢ = 273(¢ 4+ i3) and the ¢, - 273(¢s + ina) are independent. Integrat-
ing from 0 to ¢, we get 3

@ [le-vnaor=@rif+ ) e 1)
n 0
Now, from

- (54) Jo O + mtu@ut = #20) — u [ ¢ - wra(@up,

and from (52) and (53), we obtain the integral on the left side of (54) [the real
part of which is ¥(¢)] in the form of a series.
1.10. Generalization. Instead of ¥(¢), let us consider the r.f.

(55) Jo BXow+ -wXie + - - - 4 X, @

and the particular case

”~

(56) AR R Y T RS WOrYeR)

Although the integral (55), where the X, are defined by formulas like (8),
introduces (h + 1)(h + 2)/2 parameters, only h + 1 of them are essential,
and every r.f. of the forin (55) has, in general, several distinct representations
of the form (56). If the condition (11) is replaced by =\, = 0, one has at first
gight 2! distinct representations. But they may introduce complex numbers,
and the problem is to know how many are real; perhaps never more than two.

These random functions are related to the function M (f) in the space Egys
in the same way as the functions (7) and (10) are related to M (¢) in the case
n = 5. We shall see in Chap. 2 that M(¢) has two distinct expressions, con-

{
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nected with two distinct stochastic differential equations (see See. 2.8). The

- same result probably holds for the more general r.f. defined by formula (56).

2. THE Ranpom Funcrion M (f)

2.1. Definitions and general remarks. Let us consider, as in the Introduc-
tion, the Euclidean space E, and the Brownian function X (4), defined up to
an additive constant by the formula '

(57) X(B) — X(4) = €r(4,B)},

where r(A,B) is the distance between 4 and B.
We consider now a family of closed surfaces Q:, depending on a parameter #,

- and denote by M(f), M(¢), U(B) and p.(¢) the mean values of X (4), X(4)

— X(0), r(A,B), and Ug(A) as A describes Q. “Since obviously
2E{[X(4) — X(O)IIX(B) — X(O)]} = r(0,4) + r(0,B) — r(4,B),

the covariance of M (¢) is

(58) Ta(t) = EIM@OME)] = 3{UL0) + Ui(0) — pul(tt")].

_ General theorems on I'(,#') are easy to deduce, especially if » is an odd num-
ber, from the relation of U,(B) with the Newtonian potential. In this paper
we shall consider only the particular case in which 9 is a sphere with center O
and radius ¢, and especially the case n = 5. Thus we need no general theory.

When € is the considered sphere, we have

(59) Ta(tt) = 3lt + ¢ — pu(t,t)],
and, setting ,
(60) L= A /2 gin 0ds, r? =12 4 t'2 — 24’ cos 6,
we have _ i
- I N inn—2 ‘
(61) . pr = m/; r sin"2 @ do,

so that, if n = 5,

(62) ps =% /;' r sin® §'d@.

We see at once, taking cos 6 or r as parameter, that if » is an even number,
Pa is an elliptic integral. It is only when » is an odd number that panand ', are
elementary functions. Then we can easily obtain explicit expressions for M (¢).
As already stated, we shall consider here only the case n = 5, and write I'(s,¢)
instead of T's (1,t'). _ ‘

2.2. The covariance I'(f;,{;). In this paper ¢; and ¢; will denote two non-
negative numbers, and we shall set

t = min (t1,ts), ¢ = max ({y,ts).
Then ¢’ = ¢, and I'(t,,ts) = T'(t,¢).
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From (62), choosing r as a new parameter and taking account of

r dr = (¢’ sin 0 d89, -
we deduce

3 U+t
T T [T o2t o9 - s ar

+

3 , 3, ;
= |~ — 2 e - L]' ’

7 jvr
and finally
63 SPIL. JE
( ) Ps i + 51 ’3&!31‘
Then we deduce from (59)
t‘
(64) . : r(tlyti) '{W + 70tlg

If we put ¢ = e?, then M(f){* is a Gaussian stationary function, with
covariance

T'(¢,1
Tt = et — ool e, (= v e

This function and its first four derivatives are continuous, but the fifth deriva~
- tive has a jump at the point u = 0.1 ,
2.3. The continuity theorem for M (). Consider the function

(65) cI*X(t) = c] = u) dX(u) = c/ Gl J(du)d,

the pth derivative of which is cX(f). Its covariance is

¢ (¢ ,
(?!5;,/; (t — w)*@t’ — u)? du,

and when the sign of t» — {; changes, the difference beiween this function

written for ¢3 > ¢, and the analytical continuation of the function written for -

tIf n = 2p + 1, one has more generally
‘ t’ t‘ B ‘3"
T'(81,2s) -i—cxt—;'l-c:t,—;— ‘e e +(—l),Cpt-,F_-ll

and it is easy to deduce ¢;, ¢s, - - + , ¢p from a continuity theorem on U,(4).
$ This is a particular case of the continuity theorem: if n = 2p + 1, the diTerence

Tallsls) — (—1)»%‘53. (t, t: > 0),
1

and all its derivatives of order £ n are zontinuous.

Ay



